IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp375-385.html
   My bibliography  Save this article

Tailoring in-situ N, O, P, S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media

Author

Listed:
  • Yu, Jianhua
  • Li, Xu
  • Cui, Zhenxing
  • Chen, Di
  • Pang, Xiancai
  • Zhang, Qian
  • Shao, Feifei
  • Dong, Hongzhou
  • Yu, Liyan
  • Dong, Lifeng

Abstract

In order to improve electrochemical capacitance properties of biomass-derived porous carbon materials, this work develops a low temperature pre-carbonization, hydrothermal stabilization and KOH activation method to derive N, O, P, S co-doped porous carbon materials from protein-rich soybeans and effectively enhances specific capacitances in both acidic and alkaline aqueous electrolytes. Specially, the derived porous carbon demonstrates an ultra-high specific capacitance of 685.1 F g−1 at 0.5 A g−1 in 2 M KOH and 439.5 F g−1 at 1 A g−1 in 1 M H2SO4, respectively. Moreover, a superior cycling stability is achieved with a capacitance retention of 80% after 13,000 cycles at a current density of 20 A g−1 in 2 M KOH. An asymmetric supercapacitor consisting of soybean-derived carbon and NiCo-sulfide delivers a high energy density of 41.8 Wh kg−1 at a power density of 750 W kg−1. The findings above indicate hydrothermal process can effectively stabilize heteroatoms (N and P), improve graphitization and thereby enhance capacitive properties of biomass-derived carbon materials.

Suggested Citation

  • Yu, Jianhua & Li, Xu & Cui, Zhenxing & Chen, Di & Pang, Xiancai & Zhang, Qian & Shao, Feifei & Dong, Hongzhou & Yu, Liyan & Dong, Lifeng, 2021. "Tailoring in-situ N, O, P, S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media," Renewable Energy, Elsevier, vol. 163(C), pages 375-385.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:375-385
    DOI: 10.1016/j.renene.2020.08.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yuhao & Ren, Xue & Song, Mingyuan & Du, Yueyao & Wan, Jiafeng & Wu, Guang & Ma, Fangwei, 2020. "In-situ template cooperated with thiourea to prepare oxygen/nitrogen co-doped porous carbons with adjustable pore structure for supercapacitors," Renewable Energy, Elsevier, vol. 153(C), pages 1005-1015.
    2. Wang, Chao & Wang, Hanwei & Dang, Baokang & Wang, Zhe & Shen, Xiaoping & Li, Caicai & Sun, Qingfeng, 2020. "Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor," Renewable Energy, Elsevier, vol. 156(C), pages 370-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    2. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    3. Dhakal, Ganesh & Mohapatra, Debananda & Kim, Young-Il & Lee, Jintae & Kim, Woo Kyoung & Shim, Jae-Jin, 2022. "High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste," Renewable Energy, Elsevier, vol. 189(C), pages 587-600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Liyuan & Wu, Yang & Jiang, Enchen, 2022. "In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage," Energy, Elsevier, vol. 242(C).
    2. Li, Dong & Guo, Yanchuan & Li, Yi & Liu, Zhengang & Chen, Zeliang, 2022. "Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials," Renewable Energy, Elsevier, vol. 188(C), pages 61-69.
    3. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    4. Cuong, Dinh Viet & Matsagar, Babasaheb M. & Lee, Mengshan & Hossain, Md. Shahriar A. & Yamauchi, Yusuke & Vithanage, Meththika & Sarkar, Binoy & Ok, Yong Sik & Wu, Kevin C.-W. & Hou, Chia-Hung, 2021. "A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Zhu, Lingyan & Liu, Xudong & Wu, Yuan & Wang, Qifan & Wang, Haotian & Li, Dongbing, 2022. "Fast-pyrolysis lignin-biochar as an excellent precursor for high-performance capacitors," Renewable Energy, Elsevier, vol. 198(C), pages 1318-1327.
    6. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    7. Han, Juan & Deng, Ximing & Chen, Keyu & Imhanria, Sarah & Sun, Yan & Wang, Wei, 2021. "Electrochemical conversion of CO2 into tunable syngas on a B, P, N tri-doped carbon," Renewable Energy, Elsevier, vol. 177(C), pages 636-642.
    8. Xia, Guoyan & Liu, Zhanglin & He, Jinsong & Huang, Mei & Zhao, Li & Zou, Jianmei & Lei, Yongjia & Yang, Qiulin & Liu, Yan & Tian, Dong & Shen, Fei, 2024. "Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance," Renewable Energy, Elsevier, vol. 227(C).
    9. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Sun, Zhe & Zhang, Miao & Yin, Hui & Hu, Qi & Krishnan, Sarathkumar & Huang, Zhanhua & Qi, Houjuan & Wang, Xiaolei, 2023. "Tailoring hierarchically porous structure of biomass-derived carbon for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:375-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.