IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp198-212.html
   My bibliography  Save this article

Energy assessment based on semi-dynamic modelling of a photovoltaic driven vapour compression chiller using phase change materials for cold energy storage

Author

Listed:
  • Varvagiannis, Efstratios
  • Charalampidis, Antonios
  • Zsembinszki, Gabriel
  • Karellas, Sotirios
  • Cabeza, Luisa F.

Abstract

Solar cooling systems are a promising solution for reducing the electrical consumption of conventional building cooling systems. Among various alternatives, photovoltaic driven vapour compression chillers are currently the most mature and economically feasible solar cooling technology. This study focuses on the semi-dynamic modelling of a vapour compression chiller coupled with a novel refrigerant-phase change material (PCM)-water heat exchanger (RPW-HEX) which replaces the conventional chiller’s evaporator, allowing the efficient storage of the produced cooling energy. A custom-build lumped parameter model was developed in TRNSYS and was used to assess the performance of the proposed system on annual basis. Using as benchmark a conventional PV driven vapour compression chiller with electrical storage, the retrofitted hybrid storage system showed improved performance, limiting the cooling demand peaks and enhancing the solar fraction, especially for partial cooling loads. Last, a comparison of the PCM thermal energy storage to conventional batteries was carried out, leading to enhanced performance characteristics for the latter.

Suggested Citation

  • Varvagiannis, Efstratios & Charalampidis, Antonios & Zsembinszki, Gabriel & Karellas, Sotirios & Cabeza, Luisa F., 2021. "Energy assessment based on semi-dynamic modelling of a photovoltaic driven vapour compression chiller using phase change materials for cold energy storage," Renewable Energy, Elsevier, vol. 163(C), pages 198-212.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:198-212
    DOI: 10.1016/j.renene.2020.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).
    2. Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
    3. Li, Chuanchang & Peng, Meicheng & Xie, Baoshan & Li, Yaxi & Li, Mu, 2024. "Novel phase change cold energy storage materials for refrigerated transportation of fruits," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    2. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
    3. Li, Xiao-Yan & Yang, Liu & Wang, Xue-Lei & Miao, Xin-Yue & Yao, Yu & Qiang, Qiu-Qiu, 2018. "Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems," Energy, Elsevier, vol. 150(C), pages 591-600.
    4. Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Dhumane, Rohit & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard, 2017. "Portable personal conditioning systems: Transient modeling and system analysis," Applied Energy, Elsevier, vol. 208(C), pages 390-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:198-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.