IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp43-54.html
   My bibliography  Save this article

A simplified model for expedient computational assessment of the novel REEFS wave energy converter power output

Author

Listed:
  • Lopes de Almeida, J.P.P.G.
  • Abrantes, J.R.C.B.
  • Bento, J.G.S.E.S.

Abstract

REEFS is a new multipurpose wave energy converter. It produces electric energy and contributes to shore protection. It is a large nearshore submerged device that can originate high waves breaking like the natural reefs do. The device makes use of the wave’s pressure and velocity spatial differentials, to produce electric energy. A laboratorial concept proof based in a small scale physical model (1.5:100) was already successfully performed. However, to further develop the device, it is necessary to analyze the impact of its geometry and deployment depth in power output. For such purposes, computational models have proved to be more affordable than experimental approaches. However, the novelty of the concept inhibits the use of already existing computational models. In this article, a mathematical model specially developed to assess REEFS power output is presented. It is a simplified model to enable expedient use required by the exploratory nature of the initial development stages. This mathematical model is solved numerically by a dedicated computational program. The results were compared with a laboratorial concept proof. After adequate calibration, the numerical model exhibited a good agreement with the laboratorial results, indicating it can be used for expedient assessment of the REEFS power output.

Suggested Citation

  • Lopes de Almeida, J.P.P.G. & Abrantes, J.R.C.B. & Bento, J.G.S.E.S., 2020. "A simplified model for expedient computational assessment of the novel REEFS wave energy converter power output," Renewable Energy, Elsevier, vol. 157(C), pages 43-54.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:43-54
    DOI: 10.1016/j.renene.2020.04.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    2. Lopes de Almeida, J.P.P.G. & Mujtaba, B. & Oliveira Fernandes, A.M., 2018. "Preliminary laboratorial determination of the REEFS novel wave energy converter power output," Renewable Energy, Elsevier, vol. 122(C), pages 654-664.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    3. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    6. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    8. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    9. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    10. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    11. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    13. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Orphin, Jarrah & Nader, Jean-Roch & Penesis, Irene, 2021. "Uncertainty analysis of a WEC model test experiment," Renewable Energy, Elsevier, vol. 168(C), pages 216-233.
    15. Penalba, Markel & Ulazia, Alain & Saénz, Jon & Ringwood, John V., 2020. "Impact of long-term resource variations on wave energy Farms: The Icelandic case," Energy, Elsevier, vol. 192(C).
    16. Meng, Fantai & Rafiee, Ashkan & Ding, Boyin & Cazzolato, Benjamin & Arjomandi, Maziar, 2020. "Nonlinear hydrodynamics analysis of a submerged spherical point absorber with asymmetric mass distribution," Renewable Energy, Elsevier, vol. 147(P1), pages 1895-1908.
    17. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    18. Mandev, Murat Barış & Altunkaynak, Abdüsselam, 2022. "Advanced efficiency improvement of a sloping wall oscillating water column via a novel streamlined chamber design," Energy, Elsevier, vol. 259(C).
    19. Paduano, Bruno & Parrinello, Luca & Niosi, Francesco & Dell’Edera, Oronzo & Sirigu, Sergej Antonello & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Towards standardised design of wave energy converters: A high-fidelity modelling approach," Renewable Energy, Elsevier, vol. 224(C).
    20. Farajvand, Mahdiyeh & Grazioso, Valerio & García-Violini, Demián & Ringwood, John V., 2023. "Uncertainty estimation in wave energy systems with applications in robust energy maximising control," Renewable Energy, Elsevier, vol. 203(C), pages 194-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:43-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.