IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1895-1908.html
   My bibliography  Save this article

Nonlinear hydrodynamics analysis of a submerged spherical point absorber with asymmetric mass distribution

Author

Listed:
  • Meng, Fantai
  • Rafiee, Ashkan
  • Ding, Boyin
  • Cazzolato, Benjamin
  • Arjomandi, Maziar

Abstract

In previous work, a frequency-domain model was developed from linear potential theory to investigate the oscillation modes and efficiency of a single-tether 3 degree-of-freedom submerged spherical point absorber with asymmetric mass distribution (SPAMD). It was found that the trajectory of the device has a strong correlation with the performance of the wave energy converter. Specifically, the SPAMD can generate unique circular trajectories under long waves, producing up to 3 times power that of a generic single-tether point absorber (PA). However, this conclusion might not be valid for large buoy displacements due to increased nonlinear hydrodynamic effects (e.g. surface piercing, overtopping water, and vortex shedding). In this study, the trajectory of the SPAMD was analysed to determine the dominant nonlinear hydrodynamic effect that degrades the performance of a fully submerged system. The analysis was conducted in a numerical wave tank experiment (NWT), based on the Navier-Stokes equation and using the computational fluid dynamic toolbox OpenFOAM and the open-source library OLAFLOW for wave generation and absorption. The results obtained from NWT experiments show that surface piercing has the largest negative impact on the system’s performance, which compromises the efficiency of the SPAMD by modifying the trajectory and dissipating energy. As a result, the efficiency of the SPAMD significantly decreases for long waves when surface piercing is most likely to occur, which implies that submerged point absorbers are less efficient than the floating ones in this scenario. Furthermore, although the performance of the SPAMD were significantly compromised due to the effect of surface piercing, the resulting power improvement in comparison to the submerged generic point absorber was still considerable for some wave periods.

Suggested Citation

  • Meng, Fantai & Rafiee, Ashkan & Ding, Boyin & Cazzolato, Benjamin & Arjomandi, Maziar, 2020. "Nonlinear hydrodynamics analysis of a submerged spherical point absorber with asymmetric mass distribution," Renewable Energy, Elsevier, vol. 147(P1), pages 1895-1908.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1895-1908
    DOI: 10.1016/j.renene.2019.09.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Fantai & Cazzolato, Benjamin & Li, Ye & Ding, Boyin & Sergiienko, Natalia & Arjomandi, Maziar, 2019. "A sensitivity study on the effect of mass distribution of a single-tether spherical point absorber," Renewable Energy, Elsevier, vol. 141(C), pages 583-595.
    2. Bharath, Aidan & Nader, Jean-Roch & Penesis, Irene & Macfarlane, Gregor, 2018. "Nonlinear hydrodynamic effects on a generic spherical wave energy converter," Renewable Energy, Elsevier, vol. 118(C), pages 56-70.
    3. Meng, Fantai & Ding, Boyin & Cazzolato, Benjamin & Arjomandi, Maziar, 2019. "Modal analysis of a submerged spherical point absorber with asymmetric mass distribution," Renewable Energy, Elsevier, vol. 130(C), pages 223-237.
    4. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    5. Giorgio Bacelli & Ryan G. Coe & David Patterson & David Wilson, 2017. "System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling," Energies, MDPI, vol. 10(4), pages 1-33, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan G. Coe & Yi-Hsiang Yu & Jennifer Van Rij, 2017. "A Survey of WEC Reliability, Survival and Design Practices," Energies, MDPI, vol. 11(1), pages 1-19, December.
    2. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    5. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    6. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    7. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    8. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    9. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    10. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    11. Wang, LiGuo & Ringwood, John V., 2021. "Control-informed ballast and geometric optimisation of a three-body hinge-barge wave energy converter using two-layer optimisation," Renewable Energy, Elsevier, vol. 171(C), pages 1159-1170.
    12. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    14. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    15. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    16. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    17. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Forbush, Dominic D. & Bacelli, Giorgio & Spencer, Steven J. & Coe, Ryan G. & Bosma, Bret & Lomonaco, Pedro, 2022. "Design and testing of a free floating dual flap wave energy converter," Energy, Elsevier, vol. 240(C).
    19. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    20. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1895-1908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.