IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp38-45.html
   My bibliography  Save this article

Impact of continuous leachate recirculation during solid state anaerobic digestion of Miscanthus

Author

Listed:
  • Li, Chao
  • Tao, Yu
  • Fang, Jun
  • Li, Qiang
  • Lu, Wenjing

Abstract

Continuous leachate recirculation was performed in a solid-state anaerobic digestion (SS-AD) in an attempt to enhance and improve the biogas (methane) production from Miscanthus sp. Furthermore, microbial community dynamics was analysed, and liaised with the process performance and stability. Results showed that the SS-AD process without leachate recirculation showed significantly higher degradation degree of cellulose/hemicellulose (35% higher) as well as methane yield (65% higher) compared to the leachate recirculation processes. Continuous recirculation led to the transpose of active microbial groups from the main reactor to the leachate holding vessel, a condition which could be attributed to the poor degradation efficiency. Therefore, for the enhancement of biogas production in a SS-AD of structural mono-substrate with leachate recirculated process, the recirculation speed should be carefully chosen and optimized to minimize the disturbance and wash-out of the viable microbial consortium.

Suggested Citation

  • Li, Chao & Tao, Yu & Fang, Jun & Li, Qiang & Lu, Wenjing, 2020. "Impact of continuous leachate recirculation during solid state anaerobic digestion of Miscanthus," Renewable Energy, Elsevier, vol. 154(C), pages 38-45.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:38-45
    DOI: 10.1016/j.renene.2020.02.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Maria, Francesco & Sordi, Alessio & Micale, Caterina, 2012. "Optimization of Solid State Anaerobic Digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant," Applied Energy, Elsevier, vol. 97(C), pages 462-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Duo & Lü, Fan & Shao, Liming & He, Pinjing, 2017. "Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: Use of intact polar lipid analysis for microbes monitoring to enhance process ev," Renewable Energy, Elsevier, vol. 103(C), pages 38-48.
    2. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    3. Chen, Shuxian & Dai, Xiaohu & Yang, Donghai & Dai, Lingling & Hua, Yu, 2023. "Enhancing PHA production through metal-organic frameworks: Mechanisms involving superproton transport and bacterial metabolic pathways," Applied Energy, Elsevier, vol. 348(C).
    4. Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
    5. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    6. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    7. Tonini, Davide & Dorini, Gianluca & Astrup, Thomas Fruergaard, 2014. "Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process," Applied Energy, Elsevier, vol. 121(C), pages 64-78.
    8. Yao, Yiqing & Zhou, Jianye & An, Lizhe & Kafle, Gopi Krishna & Chen, Shulin & Qiu, Ling, 2018. "Role of soil in improving process performance and methane yield of anaerobic digestion with corn straw as substrate," Energy, Elsevier, vol. 151(C), pages 998-1006.
    9. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    10. Lin, Long & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2018. "Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 151-167.
    11. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    12. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    13. Ripa, M. & Fiorentino, G. & Giani, H. & Clausen, A. & Ulgiati, S., 2017. "Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment," Applied Energy, Elsevier, vol. 186(P2), pages 211-225.
    14. Zhang, Fang & Zhang, Yan & Chen, Yun & Dai, Kun & van Loosdrecht, Mark C.M. & Zeng, Raymond J., 2015. "Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70°C) mixed culture fermentation," Applied Energy, Elsevier, vol. 148(C), pages 326-333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:38-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.