IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp832-839.html
   My bibliography  Save this article

Study on the influence of small molecular gases on toluene reforming in molten salt

Author

Listed:
  • Yang, Fu
  • Hu, Hongyun
  • Gao, Qiang
  • Yang, Yuhan
  • Tang, Hua
  • Xie, Kang
  • Liu, Huan
  • He, Yao
  • Yao, Hong

Abstract

The upgrading of tar is a key issue for the sufficient application of biowaste pyrolysis technology. Molten salt, with high migration and diffusion of ions to prevent the deactivation of coke deposition of tar reforming functional metals, is considered as a feasible catalytic reaction medium and heat carrier for the upgrading of tar. The present study investigated the interactions between small molecular pyrolysis gases (including H2, CO, CH4) and main tar model compound in ternary carbonate eutectics (Li2CO3–Na2CO3–K2CO3). The results demonstrated that H2 could be decomposed to produce H radicals, promoting the conversion of toluene into gaseous products. CO32− could consume H radicals required by toluene cracking, making the process toluene polymerized to polycyclic aromatic hydrocarbons be strengthened. On the other hand, CO would react with OH radicals to produce H radicals and could enhance gas-generating process. In addition, toluene could react with CO to form benzaldehyde and phenylacetaldehyde. With the addition of CH4, more H radicals were supposed to be consumed, and toluene cracking process was further inhibited. Finally, the effect sequence of small molecular gases (H2 > CH4 > CO) on toluene reforming reaction was authenticated by investigating the impacts of introducing any two gases in toluene reforming.

Suggested Citation

  • Yang, Fu & Hu, Hongyun & Gao, Qiang & Yang, Yuhan & Tang, Hua & Xie, Kang & Liu, Huan & He, Yao & Yao, Hong, 2020. "Study on the influence of small molecular gases on toluene reforming in molten salt," Renewable Energy, Elsevier, vol. 153(C), pages 832-839.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:832-839
    DOI: 10.1016/j.renene.2020.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120302056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Martin Linck & Larry Felix & Terry Marker & Michael Roberts, 2014. "Integrated biomass hydropyrolysis and hydrotreating: a brief review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 575-581, November.
    3. Wang, Shuxiao & Shan, Rui & Wang, Yazhuo & Lu, Lili & Yuan, Haoran, 2019. "Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 130(C), pages 41-49.
    4. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yuhan & Wang, Tiancheng & Zou, Chan & Xu, Kai & Hu, Hongyun & Gao, Linxia & Li, Xian & Yao, Hong, 2022. "Comparing the thermal conversion behavior of bio-wastes in three molten nitrates," Renewable Energy, Elsevier, vol. 196(C), pages 617-624.
    2. Zeng, Kuo & Li, Jun & Xie, Yingpu & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Zhen, Wanxin & Flamant, Gilles & Chen, Hanping, 2020. "Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis," Energy, Elsevier, vol. 213(C).
    3. Dong, Lu & Liu, Yuhao & Wen, Huaizhou & Zou, Chan & Dai, Qiqi & Zhang, Haojie & Xu, Lejin & Hu, Hongyun & Yao, Hong, 2023. "The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    5. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    6. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
    10. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    11. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    12. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    13. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    14. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    15. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    16. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    17. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    18. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    19. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    20. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:832-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.