IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2489-d335672.html
   My bibliography  Save this article

A Comprehensive Set of Cooling Measures for the Overall Control and Reduction of High Temperature-Induced Thermal Damage in Oversize Deep Mines: A Case Study

Author

Listed:
  • Wei Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 21116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Tianyi Wang

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Dongsheng Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 21116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Jiajia Tang

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Peng Xu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Xu Duan

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The mining process in deep mines occurs at elevated temperatures and thus is significantly jeopardized by the thermal damage. In this study, the main factors causing high-temperatures under particular mining geological and prevailing conditions of coal mine production, namely for the Longgu Coal Mine (LCM) in Shandong Province of China, were specified and analyzed in detail. This included exothermic heat from the surrounding rock of an underground roadway, inflow of high-temperature water, seasonal temperature rise, mechanical and electrical equipment operation, and airflow compression in the mine. The integrated artificial cooling mode was implemented on the basis of the original normal ventilation and cooling facilities of the LCM, which involved cooling by mobile refrigeration units, water source heat pump refrigeration units, and a ground centralized ice-cooling radiation system, as well as the underground centralized cooling system provided by Wärme-Austausch-Technik (WAT) GmbH. Eventually, a comprehensive set of measures for the overall control and reduction of high-temperature-induced damage was realized, which ensured more effective cooling of the LCM. Thus, the average temperature of the main operation sites was reduced by 8 K, while that of the underground working faces was maintained at 299.15 K. These measures also resulted in excellent technical and economic benefits: the total three-year increase in revenue and savings reached 76.3 million USD, hence relevant findings of the study are expected to provide technical guidance on the treatment of high-temperature-induced damage in deep mines.

Suggested Citation

  • Wei Zhang & Tianyi Wang & Dongsheng Zhang & Jiajia Tang & Peng Xu & Xu Duan, 2020. "A Comprehensive Set of Cooling Measures for the Overall Control and Reduction of High Temperature-Induced Thermal Damage in Oversize Deep Mines: A Case Study," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2489-:d:335672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Owens, 2013. "Mining: Extreme prospects," Nature, Nature, vol. 495(7440), pages 4-6, March.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jielin Li & Xiaoli Yu & Chonghong Huang & Keping Zhou, 2022. "Research on the Mobile Refrigeration System at a High Temperature Working Face of an Underground Mine," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Naseer Muhammad Khan & Kewang Cao & Qiupeng Yuan & Mohd Hazizan Bin Mohd Hashim & Hafeezur Rehman & Sajjad Hussain & Muhammad Zaka Emad & Barkat Ullah & Kausar Sultan Shah & Sajid Khan, 2022. "Application of Machine Learning and Multivariate Statistics to Predict Uniaxial Compressive Strength and Static Young’s Modulus Using Physical Properties under Different Thermal Conditions," Sustainability, MDPI, vol. 14(16), pages 1-27, August.
    3. Jianan Gao & Shugang Li & Fengliang Wu & Li Ma, 2023. "Heat Transfer Model and Thermal Insulation Characteristics of Surrounding Rock of Thermal Insulation Roadway in a High-Temperature Mine," Sustainability, MDPI, vol. 15(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    2. Archan Shah & Moncef Krarti & Joe Huang, 2022. "Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-25, January.
    3. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    4. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    5. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    6. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    7. Alaie, Omid & Maddahian, Reza & Heidarinejad, Ghassem, 2021. "Investigation of thermal interaction between shallow boreholes in a GSHE using the FLS-STRCM model," Renewable Energy, Elsevier, vol. 175(C), pages 1137-1150.
    8. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    9. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    10. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    11. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    12. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    13. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    14. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    15. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    16. Zhou, Yang & Zheng, Zhi-xiang & Zhao, Guang-si, 2022. "Analytical models for heat transfer around a single ground heat exchanger in the presence of both horizontal and vertical groundwater flow considering a convective boundary condition," Energy, Elsevier, vol. 245(C).
    17. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    18. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    19. Muñoz, Mauricio & Garat, Pablo & Flores-Aqueveque, Valentina & Vargas, Gabriel & Rebolledo, Sofía & Sepúlveda, Sergio & Daniele, Linda & Morata, Diego & Parada, Miguel Ángel, 2015. "Estimating low-enthalpy geothermal energy potential for district heating in Santiago basin–Chile (33.5 °S)," Renewable Energy, Elsevier, vol. 76(C), pages 186-195.
    20. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2489-:d:335672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.