IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp973-980.html
   My bibliography  Save this article

Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H2S in biogas from swine anaerobic digester

Author

Listed:
  • Haosagul, Saowaluck
  • Prommeenate, Peerada
  • Hobbs, Glyn
  • Pisutpaisal, Nipon

Abstract

The industrial-scale of hydrogen sulfide (H2S) removal system using biological process relies on the performance of sulfide-oxidizing bacteria (SOB) to reduce corrosive H2S before being used as fuel in an industrial boiler or electric generator. The sulfide-oxidizing bacteria community in the bioscrubber treating H2S in biogas from swine farm based on the 16S rRNA gene and Sox gene sequences analysis. Microbial sludge from SPM Feedmill Co., Ltd. (SPM swine farm) were collected from the inlet and outlet sampling ports of the bioscrubber. Sequencing of full-length 16S rRNA gene and next-generation sequencing (NGS) of short-read 16S region were employed to identify the SOB communities. The cultural dependent technique has been applied for isolation of pure SOB strains, including Acinetobacter towneri (MF765755), Enterobacter asburiae (MF765756) and Aeromonas veronii (MK659586). Together with NGS analysis, which showed bacteria belong to the genera Sulfurovum (37%), Sulfuricurvum (17%) and Thiothrix (9%) could play an important role in oxidized H2S in biogas. Therefore, these SOB genera: Acinetobacter, Aeromonas, Enterobacter, Sulfurovum, and Sulfuricurvum can be applied as an indicator for efficiency and stability of H2S treatment systems in biogas from swine farms.

Suggested Citation

  • Haosagul, Saowaluck & Prommeenate, Peerada & Hobbs, Glyn & Pisutpaisal, Nipon, 2020. "Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H2S in biogas from swine anaerobic digester," Renewable Energy, Elsevier, vol. 150(C), pages 973-980.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:973-980
    DOI: 10.1016/j.renene.2019.11.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdul Aziz, Nur Izzah Hamna & Hanafiah, Marlia M. & Mohamed Ali, Mohamed Yasreen, 2019. "Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income," Renewable Energy, Elsevier, vol. 132(C), pages 363-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna K. Huertas & Lawrence Quipuzco & Amro Hassanein & Stephanie Lansing, 2020. "Comparing Hydrogen Sulfide Removal Efficiency in a Field-Scale Digester Using Microaeration and Iron Filters," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. Becker, C.M. & Marder, M. & Junges, E. & Konrad, O., 2022. "Technologies for biogas desulfurization - An overview of recent studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Qing Wu & Jieqiong Liu & Qiannan Li & Wenjun Mo & Ruihan Wan & Sen Peng, 2022. "Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds," IJERPH, MDPI, vol. 19(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    2. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    3. Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    4. Kumar, Pankaj & Kumar, Vinod & Singh, Jogendra & Kumar, Piyush, 2021. "Electrokinetic assisted anaerobic digestion of spent mushroom substrate supplemented with sugar mill wastewater for enhanced biogas production," Renewable Energy, Elsevier, vol. 179(C), pages 418-426.
    5. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.
    6. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    8. Shakourifar, Niloofar & Krisa, David & Eskicioglu, Cigdem, 2020. "Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination," Renewable Energy, Elsevier, vol. 154(C), pages 117-127.
    9. Wan Syakirah Wan Abdullah & Miszaina Osman & Mohd Zainal Abidin Ab Kadir & Renuga Verayiah, 2019. "The Potential and Status of Renewable Energy Development in Malaysia," Energies, MDPI, vol. 12(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:973-980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.