The near-field of a lab-scale wind turbine in tailored turbulent shear flows
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.12.049
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2017. "Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid," Renewable Energy, Elsevier, vol. 112(C), pages 1-16.
- Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
- Talavera, Miguel & Shu, Fangjun, 2017. "Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel," Renewable Energy, Elsevier, vol. 109(C), pages 363-371.
- Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
- Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
- Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
- Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
- Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Piotr Wiklak & Michal Kulak & Michal Lipian & Damian Obidowski, 2022. "Experimental Investigation of the Cooperation of Wind Turbines," Energies, MDPI, vol. 15(11), pages 1-20, May.
- Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
- He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
- Haojun Tang & Kit-Ming Lam & Kei-Man Shum & Yongle Li, 2019. "Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine," Energies, MDPI, vol. 12(12), pages 1-18, June.
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
- Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
- Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
- Ciprian Sorandaru & Sorin Musuroi & Flaviu Mihai Frigura-Iliasa & Doru Vatau & Marian Dordescu, 2019. "Analysis of the Wind System Operation in the Optimal Energetic Area at Variable Wind Speed over Time," Sustainability, MDPI, vol. 11(5), pages 1-16, February.
- Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
- Seim, Fredrik & Gravdahl, Arne R. & Adaramola, Muyiwa S., 2017. "Validation of kinematic wind turbine wake models in complex terrain using actual windfarm production data," Energy, Elsevier, vol. 123(C), pages 742-753.
- Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
- Wei Yang & Meng Yu & Bowen Yan & Guoqing Huang & Qingshan Yang & Senqin Zhang & Tianhao Hong & Xu Zhou & Xiaowei Deng, 2022. "Wind Tunnel Tests of Wake Characteristics for a Scaled Wind Turbine Model Based on Dynamic Similarity," Energies, MDPI, vol. 15(17), pages 1-17, August.
More about this item
Keywords
Wind turbine; Tailored turbulence; Shear flow; Lab-scale;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:735-748. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.