IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp689-696.html
   My bibliography  Save this article

Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials

Author

Listed:
  • Aguieiras, Érika C.G.
  • Cavalcanti, Elisa D.C.
  • da Silva, Priscila R.
  • Soares, Valéria F.
  • Fernandez-Lafuente, Roberto
  • Bessa Assunção, Charles Lima
  • da Silva, José André C.
  • Freire, Denise M.G.

Abstract

Synthetic oleochemical esters represents a growing alternative for mineral oil-based lubricants. In this sense, the present study shows the results of enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. The potential of two commercial immobilized lipases, lipase B from Candida antarctica (Novozyme 435) and lipase from Rhizomucor miehei (Lipozyme RM IM), to produce NPG esters in a solvent-free medium was evaluated. High conversions (>95%) were obtained for both raw materials, with both enzymes, but in a shorter reaction time for soybean biodiesel (24 h) than castor biodiesel (48 h). Both enzymes could be successfully reused for six reactions, Novozyme 435 maintained ≥70% of the initial conversion using the two raw materials and Lipozyme RM IM maintained ≥90% of the first reaction conversion using castor biodiesel. The soybean NPG esters showed good viscosity index, higher than 198, and the castor NPG esters showed good pour point, lower than −20 °C, and good oxidative stability, higher than 30 min. The physico-chemical properties of the biolubricants were dependent on the biodiesel source which directly influence the final application of the products.

Suggested Citation

  • Aguieiras, Érika C.G. & Cavalcanti, Elisa D.C. & da Silva, Priscila R. & Soares, Valéria F. & Fernandez-Lafuente, Roberto & Bessa Assunção, Charles Lima & da Silva, José André C. & Freire, Denise M.G., 2020. "Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials," Renewable Energy, Elsevier, vol. 148(C), pages 689-696.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:689-696
    DOI: 10.1016/j.renene.2019.10.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahadi, Murad & Salimon, Jumat & Derawi, Darfizzi, 2021. "Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification," Renewable Energy, Elsevier, vol. 171(C), pages 981-993.
    2. Abd Wafti, Nur Sulihatimarsyila & Yunus, Robiah & Lau, Harrison Lik Nang & Choong, Thomas Shean Yaw & Abd-Aziz, Suraini, 2022. "Enzymatic synthesis of palm oil-based trimethylolpropane ester as biolubricant base stock catalyzed by Lipozyme 435," Energy, Elsevier, vol. 260(C).
    3. Nor, Nurazira Mohd & Salih, Nadia & Salimon, Jumat, 2022. "Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant," Renewable Energy, Elsevier, vol. 200(C), pages 942-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:689-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.