IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p864-873.html
   My bibliography  Save this article

A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion

Author

Listed:
  • Sinharoy, Arindam
  • Pakshirajan, Kannan

Abstract

This work details the synthesis and characterization of iron nanoparticles (GT-INP) from green-tea extract and its effect on biohydrogen production from CO by anaerobic biomass. Analysis of the GT-INP by UV–visible spectroscopy revealed spherical or quasi-spherical shape of the iron oxide nanoparticles. X-ray diffraction analysis confirmed the presence of iron oxide (Fe3O4) and iron(III) oxide-hydroxide (FeO(OH)) in the GT-INP. The appearance of strong vibrational bands in fourier transform infrared spectra indicated the presence of amide, C–N and hydroxyl groups due to flavonoids, alkaloids and polyphenols as capping agents in the GT-INP. Field emission scanning electron microscopy and field emission transmission electron microscopy analyses revealed that the size of GT-INP was within 50–90 nm range with a spherical shaped aggregated structure. In the presence of GT-INP at 1000 mg/l, more than 56 ± 5.32% enhancement in aqueous solubility of CO was achieved along with a maximum H2 production of 1.58 ± 0.13 mmol/l by anaerobic biomass, which is nearly 44% more than that obtained without any GT-INP addition. Continuous bioreactor study using a gas lift reactor further established the potential of GT-INP in improving biohydrogen production from CO with a maximum H2 titre of 30.7 mmol/l due to GT-INP addition in the system.

Suggested Citation

  • Sinharoy, Arindam & Pakshirajan, Kannan, 2020. "A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion," Renewable Energy, Elsevier, vol. 147(P1), pages 864-873.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:864-873
    DOI: 10.1016/j.renene.2019.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
    2. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    3. Stanislaus, Mishma S. & Zhang, Nan & Yuan, Yue & Zheng, Hanying & Zhao, Chenyu & Hu, Xiaohong & Zhu, Qi & Yang, Yingnan, 2018. "Improvement of biohydrogen production by optimization of pretreatment method and substrate to inoculum ratio from microalgal biomass and digested sludge," Renewable Energy, Elsevier, vol. 127(C), pages 670-677.
    4. Seifert, K. & Zagrodnik, R. & Stodolny, M. & Łaniecki, M., 2018. "Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation," Renewable Energy, Elsevier, vol. 122(C), pages 526-532.
    5. Lucas, S.D.M. & Peixoto, G. & Mockaitis, G. & Zaiat, M. & Gomes, S.D., 2015. "Energy recovery from agro-industrial wastewaters through biohydrogen production: Kinetic evaluation and technological feasibility," Renewable Energy, Elsevier, vol. 75(C), pages 496-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    2. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    3. Aghajani Delavar, Mojtaba & Wang, Junye, 2022. "Three-dimensional modeling of photo fermentative biohydrogen generation in a microbioreactor," Renewable Energy, Elsevier, vol. 181(C), pages 1034-1045.
    4. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    5. Ruth Chinyere Anyanwu & Cristina Rodriguez & Andy Durrant & Abdul Ghani Olabi, 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    6. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    7. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    8. Jakub Mazurkiewicz & Pola Sidoruk & Jacek Dach & Malgorzata Szumacher-Strabel & Dorota Lechniak & Paul Galama & Abele Kuipers & Ireneusz R. Antkowiak & Adam Cieslak, 2023. "Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows," Agriculture, MDPI, vol. 13(10), pages 1-11, October.
    9. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    11. Sakiewicz, P. & Piotrowski, K. & Ober, J. & Karwot, J., 2020. "Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    12. Leong, Wai Hong & Kiatkittipong, Worapon & Lam, Man Kee & Khoo, Kuan Shiong & Show, Pau Loke & Mohamad, Mardawani & Chong, Siewhui & Abdurrahman, Muslim & Lim, Jun Wei, 2022. "Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel," Renewable Energy, Elsevier, vol. 184(C), pages 443-451.
    13. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Pachapur, Vinayak Laxman & Sarma, Saurabh Jyoti & Brar, Satinder Kaur & Le Bihan, Yann & Buelna, Gerardo & Verma, Mausam, 2016. "Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum," Renewable Energy, Elsevier, vol. 95(C), pages 542-551.
    15. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    16. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    17. R. Alrefai & A.M. Alrefai & K.Y. Benyounis & J. Stokes, 2020. "An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes," Energies, MDPI, vol. 13(9), pages 1-24, May.
    18. Karolina Kucharska & Patrycja Makoś-Chełstowska & Edyta Słupek & Jacek Gębicki, 2021. "Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation," Energies, MDPI, vol. 14(19), pages 1-16, October.
    19. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    20. George Dimitrellos & Gerasimos Lyberatos & Georgia Antonopoulou, 2020. "Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production?," Sustainability, MDPI, vol. 12(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:864-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.