IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p630-638.html
   My bibliography  Save this article

A theoretical model of natural circulation flow and heat transfer within horizontal evacuated tube considering the secondary flow

Author

Listed:
  • Li, Jiarong
  • Li, Xiangdong
  • Wang, Yong
  • Tu, Jiyuan

Abstract

Solar collectors with horizontal evacuated tubes are widely used to alleviate the energy crisis. This paper describes a numerical and theoretical study on a horizontal single-ended evacuated tube. A range of validated numerical simulations were conducted to investigate the fluid flow and heat transfer within the tube. The results showed that the secondary flow had a significant influence on the natural circulation flow rate and the temperature distribution within the tube. A theoretical model accounting for the secondary flow was developed to estimate the circulation flow rate and axial temperature distribution. Based on the numerical results, correlations of the circulation flow rate and heat transfer were proposed. The circulation flow rate and heat transfer were correlated to the solar input, tank temperature and tube aspect ratio. Compared to an existing model, the developed model showed a better accuracy in predicting the circulation flow rate and temperature distribution.

Suggested Citation

  • Li, Jiarong & Li, Xiangdong & Wang, Yong & Tu, Jiyuan, 2020. "A theoretical model of natural circulation flow and heat transfer within horizontal evacuated tube considering the secondary flow," Renewable Energy, Elsevier, vol. 147(P1), pages 630-638.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:630-638
    DOI: 10.1016/j.renene.2019.08.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sokhansefat, Tahmineh & Kasaeian, Alibakhsh & Rahmani, Kiana & Heidari, Ameneh Haji & Aghakhani, Faezeh & Mahian, Omid, 2018. "Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions," Renewable Energy, Elsevier, vol. 115(C), pages 501-508.
    2. Bracamonte, Johane, 2017. "Effect of the transient energy input on thermodynamic performance of passive water-in-glass evacuated tube solar water heaters," Renewable Energy, Elsevier, vol. 105(C), pages 689-701.
    3. Colin Cameron, A. & Windmeijer, Frank A. G., 1997. "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics, Elsevier, vol. 77(2), pages 329-342, April.
    4. Xiao, Chaofeng & Luo, Huilong & Tang, Runsheng & Zhong, Hao, 2004. "Solar thermal utilization in China," Renewable Energy, Elsevier, vol. 29(9), pages 1549-1556.
    5. jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Bin & Lund, Peter D. & Wang, Jun, 2021. "Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector," Energy, Elsevier, vol. 220(C).
    2. Li, Qiong & Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Zhang, Yougang & Ding, Xiang & Huang, Xiaoqiao & Liu, Wuming, 2020. "Experiment and simulation study on convective heat transfer of all-glass evacuated tube solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1129-1139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    2. Ghazi Falah & Michael Hoy & Rakhal Sarker, 2000. "Co-existence in Selected Mixed Arab-Jewish Cities in Israel: By Choice or by Default?," Urban Studies, Urban Studies Journal Limited, vol. 37(4), pages 775-796, April.
    3. Cowell, Frank & Flachaire, Emmanuel & Bandyopadhyay, Sanghamitra, 2009. "Goodness-of-fit: an economic approach," LSE Research Online Documents on Economics 25433, London School of Economics and Political Science, LSE Library.
    4. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    5. Qiang Wang & Jinfu Wang & Runsheng Tang, 2016. "Design and Optical Performance of Compound Parabolic Solar Concentrators with Evacuated Tube as Receivers," Energies, MDPI, vol. 9(10), pages 1-16, October.
    6. Gambade, Julien & Noël, Hervé & Glouannec, Patrick & Magueresse, Anthony, 2023. "Numerical model of intermittent solar hot water production," Renewable Energy, Elsevier, vol. 218(C).
    7. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    8. Burkey, Mark L. & Obeng, Kofi, 2005. "Crash Risk Reduction at Signalized Intersections Using Longitudinal Data," MPRA Paper 36281, University Library of Munich, Germany.
    9. Daniel Griffith & David Wong, 2007. "Modeling population density across major US cities: a polycentric spatial regression approach," Journal of Geographical Systems, Springer, vol. 9(1), pages 53-75, April.
    10. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    11. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    12. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    13. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H., 2011. "Accounting for Heterogeneity in Hedging Behavior: Comparing & Evaluating Grouping Methods," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114787, European Association of Agricultural Economists.
    14. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    15. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    16. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    17. Sarker, Rakhal & Surry, Yves R., 2003. "The Fast Decay Process In Recreational Demand Activities And The Use Of Alternative Count Data Models," Working Papers 34147, University of Guelph, Department of Food, Agricultural and Resource Economics.
    18. Lionel Janin & Benoît Menoni, 2007. "L e contrôle des concentrations en France : une analyse empirique des avis du Conseil de la concurrence," Economie & Prévision, La Documentation Française, vol. 0(2), pages 93-114.
    19. Kim, Suyoung & Park, Sae Han & Chang, Ye Ji & Go, Yujin & Kim, Sung Won, 2024. "Carbon nanotube microbeads for enhanced gas heating in a fluidized bed solar air collector," Renewable Energy, Elsevier, vol. 221(C).
    20. Hiau LooiKee & Alessandro Nicita & Marcelo Olarreaga, 2009. "Estimating Trade Restrictiveness Indices," Economic Journal, Royal Economic Society, vol. 119(534), pages 172-199, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:630-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.