IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p239-248.html
   My bibliography  Save this article

Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling

Author

Listed:
  • Xiao, Biao
  • Deng, Weizhong
  • Ma, Zhengyuan
  • He, Song
  • He, Lin
  • Li, Xiang
  • Yuan, Fang
  • Liu, Wei
  • Liu, Zhichun

Abstract

A heating area of 190 mm × 90 mm large flat-plate loop heat pipe was designed for the heat dissipation problem of multi-heat sources. The design process was also briefly introduced. The evaporator was made of aluminum alloy, and heat dissipation fins were arranged on the back side of the compensation chamber to enhance the heat transfer between the compensation and the ambient. The stainless steel wire mesh worked as the porous wick, and the acetone was chosen as the working fluid. Six ceramics heating blocks were used as the heat sources. The results showed that the system could start up and work normally between 20 W–140 W, and maintained the heating surface temperature below 90 °C. The system behaved as a zigzag start below 20 W, and the condenser inlet temperature oscillated periodically, and the system could start up stably between 25 W and 140 W. When the heat load was increased, there occurred periodic temperature fluctuation in condenser outlet. The system could establish a new balance quickly during variable heat loads operation, which reflected the good reliability of the LHP. The experiment of changing the heat dissipation condition on the condenser side and the evaporator side was carried out. When the heat load was 120 W and the ambient temperature was constant, the system equilibrium temperature difference caused by the air ventilation of the condenser was changed, which was less than the heat dissipation of the evaporator under the same conditions. The evaporator thermal resistance decreased with the increase in heat load, and the minimum thermal resistance of 0.032 °C/W was achieved at the heat load of 120 W. The total thermal resistance of the LHP was distributed between 0.312 °C/W and 0.212 °C/W. It was also pointed out that it was very important to improve the thermal uniformity of the heated surface of a large-plane loop heat pipe system with multiple heat sources.

Suggested Citation

  • Xiao, Biao & Deng, Weizhong & Ma, Zhengyuan & He, Song & He, Lin & Li, Xiang & Yuan, Fang & Liu, Wei & Liu, Zhichun, 2020. "Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 239-248.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:239-248
    DOI: 10.1016/j.renene.2019.08.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    2. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    3. Yu, Cairui & Shen, Dongmei & He, Wei & Hu, Zhongting & Zhang, Sheng & Chu, Wenfeng, 2021. "Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology," Renewable Energy, Elsevier, vol. 178(C), pages 1057-1069.
    4. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    5. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    6. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Xiaochen Zhang & Han Zhao & Jing Li & Fengyu Zhang & Yue Zhang & Hongyu Yan & Zhihao Niu & David Gerada & He Zhang, 2022. "Experimental Investigation of Heat Pipe Inclination Angle Effect on Temperature Nonuniformity in Electrical Machines," Energies, MDPI, vol. 16(1), pages 1-14, December.
    8. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.
    9. Zhong, Guisheng & Tang, Yong & Ding, Xinrui & Rao, Longshi & Chen, Gong & Tang, Kairui & Yuan, Wei & Li, Zongtao, 2020. "Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions," Renewable Energy, Elsevier, vol. 149(C), pages 1032-1039.
    10. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Yuqi Han & Weilin Zhuge & Jie Peng & Yuping Qian & Yangjun Zhang, 2023. "Numerical Investigation on Internal Structures of Ultra-Thin Heat Pipes for PEM Fuel Cells Cooling," Energies, MDPI, vol. 16(3), pages 1-22, January.
    12. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:239-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.