IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp583-595.html
   My bibliography  Save this article

A sensitivity study on the effect of mass distribution of a single-tether spherical point absorber

Author

Listed:
  • Meng, Fantai
  • Cazzolato, Benjamin
  • Li, Ye
  • Ding, Boyin
  • Sergiienko, Natalia
  • Arjomandi, Maziar

Abstract

In previous work, a single-tether submerged spherical point absorber with asymmetric mass distribution (SPAMD) was proposed to enable harvesting wave energy induced by the surge and heave motion of the buoy. By taking advantage of the motion coupling arising from the asymmetric mass distribution of the buoy, the SPAMD was found to be up to 3 times more efficient than a generic single-tether point absorber (with uniform mass distribution buoy) under regular waves. For motion-coupled systems like the SPAMD, the mass distribution is a significant factor that governs the kinematics and the efficiency of the device. Therefore, in this paper, a 3DOF (surge, heave and pitch) spectral-domain model considering viscous drag was developed, to investigate the sensitivity of the mass distribution on the power output of the SPAMD in irregular waves. The aim of the sensitivity study is to provide a guideline for the wave energy industry when designing such devices. At the end of this paper, the yearly mean power output of the SPAMD with optimal mass distribution was assessed at three test sites near Yeu Island (France), Perth (Australia) and Sydney (Australia). It was found that in such sea sites, the SPAMD was at least 1.5 times more efficient than the generic single-tether point absorber, indicating that the SPAMD might have a significant commercial potential. Furthermore, for the three sites investigated, the performance of the SPAMD was found to be relatively tolerant to non-optimal PTO configuration, implying that sea-state specific tuning is unnecessary.

Suggested Citation

  • Meng, Fantai & Cazzolato, Benjamin & Li, Ye & Ding, Boyin & Sergiienko, Natalia & Arjomandi, Maziar, 2019. "A sensitivity study on the effect of mass distribution of a single-tether spherical point absorber," Renewable Energy, Elsevier, vol. 141(C), pages 583-595.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:583-595
    DOI: 10.1016/j.renene.2019.03.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergiienko, N.Y. & Cazzolato, B.S. & Ding, B. & Hardy, P. & Arjomandi, M., 2017. "Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 108(C), pages 425-437.
    2. Meng, Fantai & Ding, Boyin & Cazzolato, Benjamin & Arjomandi, Maziar, 2019. "Modal analysis of a submerged spherical point absorber with asymmetric mass distribution," Renewable Energy, Elsevier, vol. 130(C), pages 223-237.
    3. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Meng, Fantai & Rafiee, Ashkan & Ding, Boyin & Cazzolato, Benjamin & Arjomandi, Maziar, 2020. "Nonlinear hydrodynamics analysis of a submerged spherical point absorber with asymmetric mass distribution," Renewable Energy, Elsevier, vol. 147(P1), pages 1895-1908.
    3. Wang, LiGuo & Ringwood, John V., 2021. "Control-informed ballast and geometric optimisation of a three-body hinge-barge wave energy converter using two-layer optimisation," Renewable Energy, Elsevier, vol. 171(C), pages 1159-1170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    2. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
    4. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    7. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    8. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    10. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    11. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    12. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    13. Waggitt, J.J & Scott, B.E, 2014. "Using a spatial overlap approach to estimate the risk of collisions between deep diving seabirds and tidal stream turbines: A review of potential methods and approaches," Marine Policy, Elsevier, vol. 44(C), pages 90-97.
    14. Andrei Polejack & Sigi Gruber & Mary S. Wisz, 2021. "Atlantic Ocean science diplomacy in action: the pole-to-pole All Atlantic Ocean Research Alliance," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    15. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    16. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    17. Saadat, Y. & Fernandez, Nelson & Samimi, Alexei & Alam, Mohammad Reza & Shakeri, Mostafa & Ghorbani, Reza, 2016. "Investigating of Helmholtz wave energy converter," Renewable Energy, Elsevier, vol. 87(P1), pages 67-76.
    18. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    19. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    20. Rtimi, Rajae & Sottolichio, Aldo & Tassi, Pablo, 2022. "The Rance tidal power station: Toward a better understanding of sediment dynamics in response to power generation," Renewable Energy, Elsevier, vol. 201(P1), pages 323-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:583-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.