IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1139-1150.html
   My bibliography  Save this article

Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders

Author

Listed:
  • González, William A.
  • López, Diana
  • Pérez, Juan F.

Abstract

The gardens from the University of Antioquia main campus (Colombia) produce ∼2.8 tons of fallen leaves (FL) per month on a dry weight basis. A sample of this garden waste was pelletized (fallen leaves pellets, FLP). Accordingly, the physical and thermochemical properties of FLP were characterized for use as solid biofuel. The densification of FL was carried out with varying moisture (10, 15 and 20 wt%) and the glycerol contents (0, 5, and 10 wt%) as binders following a multifactorial statistical experimental design. In particular, the significant effect of the glycerol content on physical properties of FLP is noteworthy, as its increase influenced bulk density, which decreased from 524 to 380 kg/m3. Furthermore, it was found that with the simultaneous increase of moisture and glycerol contents, tensile strength decreased by 10%, but the elastic behavior of pellets was elevated, leading to increases in their deformation capacity from 0.75 mm to 2.35 mm. This behavior can also be checked with superficial hardness of FLP, which decreased by up to 70% when the glycerol content increased. The fuel value index of FLP diminished by 15% with the glycerol content, while the volatile matter increased, leading to improve the reactivity of the pellets.

Suggested Citation

  • González, William A. & López, Diana & Pérez, Juan F., 2020. "Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders," Renewable Energy, Elsevier, vol. 147(P1), pages 1139-1150.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1139-1150
    DOI: 10.1016/j.renene.2019.09.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartocci, Pietro & Bidini, Gianni & Asdrubali, Francesco & Beatrice, Carlo & Frusteri, Francesco & Fantozzi, Francesco, 2018. "Batch pyrolysis of pellet made of biomass and crude glycerol: Mass and energy balances," Renewable Energy, Elsevier, vol. 124(C), pages 172-179.
    2. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    3. Samuelsson, Robert & Larsson, Sylvia H. & Thyrel, Mikael & Lestander, Torbjörn A., 2012. "Moisture content and storage time influence the binding mechanisms in biofuel wood pellets," Applied Energy, Elsevier, vol. 99(C), pages 109-115.
    4. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    5. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    6. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    7. Niedziółka, Ignacy & Szpryngiel, Mieczysław & Kachel-Jakubowska, Magdalena & Kraszkiewicz, Artur & Zawiślak, Kazimierz & Sobczak, Paweł & Nadulski, Rafał, 2015. "Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass," Renewable Energy, Elsevier, vol. 76(C), pages 312-317.
    8. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    9. Li, Hui & Liu, Xinhua & Legros, Robert & Bi, Xiaotao T. & Jim Lim, C. & Sokhansanj, Shahab, 2012. "Pelletization of torrefied sawdust and properties of torrefied pellets," Applied Energy, Elsevier, vol. 93(C), pages 680-685.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    3. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    4. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
    5. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    6. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    7. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    8. Chen, N.N. & Chen, M.Q. & Fu, B.A. & Song, J.J., 2017. "Far-infrared irradiation drying behavior of typical biomass briquettes," Energy, Elsevier, vol. 121(C), pages 726-738.
    9. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    10. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    11. Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
    12. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. da Silva, Sandra Bezerra & Arantes, Marina Donária Chaves & de Andrade, Jaily Kerller Batista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & Protásio, Thiago de Paula, 2020. "Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil," Renewable Energy, Elsevier, vol. 147(P1), pages 1870-1879.
    14. Parthasarathy Velusamy & Jagadeesan Srinivasan & Nithyaselvakumari Subramanian & Rakesh Kumar Mahendran & Muhammad Qaiser Saleem & Maqbool Ahmad & Muhammad Shafiq & Jin-Ghoo Choi, 2023. "Optimization-Driven Machine Learning Approach for the Prediction of Hydrochar Properties from Municipal Solid Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    15. Johanna Gaitán-Alvarez & Roger Moya & Allen Puente-Urbina & Ana Rodriguez-Zuñiga, 2017. "Physical and Compression Properties of Pellets Manufactured with the Biomass of Five Woody Tropical Species of Costa Rica Torrefied at Different Temperatures and Times," Energies, MDPI, vol. 10(8), pages 1-17, August.
    16. Zhu, Youjian & Yang, Wei & Fan, Jiyuan & Kan, Tao & Zhang, Wennan & Liu, Heng & Cheng, Wei & Yang, Haiping & Wu, Xuehong & Chen, Hanping, 2018. "Effect of sodium carboxymethyl cellulose addition on particulate matter emissions during biomass pellet combustion," Applied Energy, Elsevier, vol. 230(C), pages 925-934.
    17. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    18. Ma, Jiao & Feng, Shuo & Shen, Xiaoqian & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2021. "Integration of the pelletization and combustion of biodried products derived from municipal organic wastes: The influences of compression temperature and pressure," Energy, Elsevier, vol. 219(C).
    19. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    20. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1139-1150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.