IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp384-396.html
   My bibliography  Save this article

Compatibility of container materials for Concentrated Solar Power with a solar salt and alumina based nanofluid: A study under dynamic conditions

Author

Listed:
  • Nieto-Maestre, Javier
  • Muñoz-Sánchez, Belén
  • Fernández, Angel G.
  • Faik, Abdessamad
  • Grosu, Yaroslav
  • García-Romero, Ana

Abstract

Thermal energy storage (TES) is an efficient solution for improving the dispatchability of Concentrated Solar Power (CSP) plants. A system, consisting of two tanks with Solar Salt (NaNO3 60% wt. and KNO3 40% wt.) is commonly used. However, the investment cost of this technology is very high, due to the huge amount of salts required (thousands of tons). A pronounced interest is evident for improving the thermophysical properties of molten salts by adding small amounts of nanoparticles in order to reduce the mass of molten salts at CSP. At the moment, the effect of nanoparticle addition on corrosion of container materials is poorly explored. In particular, there are no works regarding the dynamic effect of nanoparticles on the corrosivity of molten salts. In this work we present first ever dynamic corrosion tests for Solar salt doped with alumina nanoparticles (1% wt.). Carbon Steel A516 and SS347, used in double-tank system, were tested. Corrosion rates were 94.8 μm yr−1 and negligible respectively (1000 h, 385 °C). Detailed examination of construction materials revealed incorporation of nanoparticles into the corrosion layer and considerably lower corrosion rate as compared to the previously reported work on the nanoparticles-free Solar salt.

Suggested Citation

  • Nieto-Maestre, Javier & Muñoz-Sánchez, Belén & Fernández, Angel G. & Faik, Abdessamad & Grosu, Yaroslav & García-Romero, Ana, 2020. "Compatibility of container materials for Concentrated Solar Power with a solar salt and alumina based nanofluid: A study under dynamic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 384-396.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:384-396
    DOI: 10.1016/j.renene.2019.06.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    2. Muñoz-Sánchez, Belén & Nieto-Maestre, Javier & Iparraguirre-Torres, Iñigo & García-Romero, Ana & Sala-Lizarraga, Jose M., 2018. "Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3924-3945.
    3. Miró, Laia & Navarro, M. Elena & Suresh, Priyamvadha & Gil, Antoni & Fernández, A. Inés & Cabeza, Luisa F., 2014. "Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES)," Applied Energy, Elsevier, vol. 113(C), pages 1261-1268.
    4. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    5. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    6. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    7. Fernández, Angel G. & Muñoz-Sánchez, Belen & Nieto-Maestre, Javier & García-Romero, Ana, 2019. "High temperature corrosion behavior on molten nitrate salt-based nanofluids for CSP plants," Renewable Energy, Elsevier, vol. 130(C), pages 902-909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Prieto & Adrian Blindu & Luisa F. Cabeza & Juan Valverde & Guillermo García, 2023. "Molten Salts Tanks Thermal Energy Storage: Aspects to Consider during Design," Energies, MDPI, vol. 17(1), pages 1-19, December.
    2. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    4. Luisa F. Cabeza & Emiliano Borri & Cristina Prieto, 2022. "Bibliometric Map on Corrosion in Concentrating Solar Power Plants," Energies, MDPI, vol. 15(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    2. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    3. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    5. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    6. Carro, A. & Chacartegui, R. & Ortiz, C. & Arcenegui-Troya, J. & Pérez-Maqueda, L.A. & Becerra, J.A., 2023. "Integration of calcium looping and calcium hydroxide thermochemical systems for energy storage and power production in concentrating solar power plants," Energy, Elsevier, vol. 283(C).
    7. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    8. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    9. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    10. Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
    11. Laura Boquera & David Pons & Ana Inés Fernández & Luisa F. Cabeza, 2021. "Characterization of Supplementary Cementitious Materials and Fibers to Be Implemented in High Temperature Concretes for Thermal Energy Storage (TES) Application," Energies, MDPI, vol. 14(16), pages 1-26, August.
    12. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
    13. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    15. Na Li & Yang Wang & Qi Liu & Hao Peng, 2022. "Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage," Energies, MDPI, vol. 15(18), pages 1-17, September.
    16. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    17. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    18. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    19. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    20. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:384-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.