IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1510-1523.html
   My bibliography  Save this article

3D characterization of thermo-hydro-geological fields and estimation of power potential from Puga geothermal reservoir, Ladakh, India

Author

Listed:
  • Jha, Shibani K.
  • Puppala, Harish
  • Mohan Kumar, M.S.

Abstract

Puga geothermal reservoir in India shows promising thermal manifestation zones. However, no systematic study is done to develop the 3D characterization of thermo-hydro-geological fields for this reservoir. A new methodology is developed to characterize porosity, thermal conductivity, density, specific heat, radioactive heat capacity and permeability as 3D block heterogeneity till a depth of 4 km from resistivity maps. The temperature field and stored heat energy in a geothermal reservoir are dependent on these parameters. Based on the developed characterization, 3D coupled flow and heat transport processes are simulated to estimate the extractable temperature and power to be generated from doublet extraction scheme with various operational conditions. The study finds energy recovery factor of 8.16% and 37.83% and minimum electrical power potential of 1.2 MWe and 50.4 MWe with 12% conversion efficiency from the depths of 250 m and 1875 m respectively over 50 years from Puga field. Sensitivity for fluid injection/extraction rate and well spacing is studied. The results show promising power potential from 1.4 to 2 km of depth. The block heterogeneity characterization is more reliable than layered and homogeneous characterization. The outcomes would certainly acquire a significant role in decision-making strategies for Puga geothermal exploitation.

Suggested Citation

  • Jha, Shibani K. & Puppala, Harish & Mohan Kumar, M.S., 2020. "3D characterization of thermo-hydro-geological fields and estimation of power potential from Puga geothermal reservoir, Ladakh, India," Renewable Energy, Elsevier, vol. 146(C), pages 1510-1523.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1510-1523
    DOI: 10.1016/j.renene.2019.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Keni & Lee, Bo-Heng & Ling, Lulu & Guo, Tai-Rong & Liu, Chih-Hsi & Ouyang, Shoung, 2016. "Modeling studies for production potential of Chingshui geothermal reservoir," Renewable Energy, Elsevier, vol. 94(C), pages 568-578.
    2. Chen, Jiliang & Jiang, Fangming, 2015. "Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 74(C), pages 37-48.
    3. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    4. Jha, Shibani K. & Puppala, Harish, 2017. "Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index," Energy, Elsevier, vol. 127(C), pages 116-127.
    5. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puppala, Harish & Arora, Manoj Kumar & Garlapati, Nagababu & Bheemaraju, Amarnath, 2023. "GIS-MCDM based framework to evaluate site suitability and CO2 mitigation potential of earth-air-heat exchanger: A case study," Renewable Energy, Elsevier, vol. 216(C).
    2. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jingyi & Xu, Tianfu & Jiang, Zhenjiao & Feng, Bo & Liang, Xu, 2020. "Reducing formation damage by artificially controlling the fluid-rock chemical interaction in a double-well geothermal heat production system," Renewable Energy, Elsevier, vol. 149(C), pages 455-467.
    2. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    3. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    4. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    5. Marina Iorio & Alberto Carotenuto & Alfonso Corniello & Simona Di Fraia & Nicola Massarotti & Alessandro Mauro & Renato Somma & Laura Vanoli, 2020. "Low Enthalpy Geothermal Systems in Structural Controlled Areas: A Sustainability Analysis of Geothermal Resource for Heating Plant (The Mondragone Case in Southern Appennines, Italy)," Energies, MDPI, vol. 13(5), pages 1-26, March.
    6. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    7. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    8. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2018. "Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters," Renewable Energy, Elsevier, vol. 122(C), pages 184-195.
    9. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2019. "Efficient workflow for simulation of multifractured enhanced geothermal systems (EGS)," Renewable Energy, Elsevier, vol. 131(C), pages 763-777.
    10. Puppala, Harish & Jha, Shibani K., 2018. "Identification of prospective significance levels for potential geothermal fields of India," Renewable Energy, Elsevier, vol. 127(C), pages 960-973.
    11. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    12. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    13. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    14. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    15. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    16. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    17. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    18. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    19. Samin, Maleaha Y. & Faramarzi, Asaad & Jefferson, Ian & Harireche, Ouahid, 2019. "A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs," Renewable Energy, Elsevier, vol. 134(C), pages 379-389.
    20. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1510-1523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.