IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp408-418.html
   My bibliography  Save this article

Comparison of synthetic turbulence approaches for blade element momentum theory prediction of tidal turbine performance and loads

Author

Listed:
  • Togneri, Michael
  • Pinon, Grégory
  • Carlier, Clément
  • Choma Bex, Camille
  • Masters, Ian

Abstract

Turbulence is a crucial flow phenomenon for tidal energy converters (TECs), as it influences both the peak loads they experience and their fatigue life. To best mitigate its effects we must understand both turbulence itself and how it induces loads on TECs. To that end, this paper presents the results of blade element momentum theory (BEMT) simulations of flume-scale TEC models subjected to synthetic turbulent flows. Synthetic turbulence methods produce three-dimensional flowfields from limited data, without solving the equations governing fluid motion. These flowfields are non-physical, but match key statistical properties of real turbulence and are much quicker and computationally cheaper to produce. This study employs two synthetic turbulence generation methods: the synthetic eddy method and the spectral Sandia method. The response of the TECs to the synthetic turbulence is predicted using a robust BEMT model, modified from the classical formulation of BEMT. We show that, for the cases investigated, TEC load variability is lower in stall operation than at higher tip speed ratios. The variability of turbine loads has a straightforward relationship to the turbulence intensity of the inflow. Spectral properties of the velocity field are not fully reflected in the spectra of TEC loads.

Suggested Citation

  • Togneri, Michael & Pinon, Grégory & Carlier, Clément & Choma Bex, Camille & Masters, Ian, 2020. "Comparison of synthetic turbulence approaches for blade element momentum theory prediction of tidal turbine performance and loads," Renewable Energy, Elsevier, vol. 145(C), pages 408-418.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:408-418
    DOI: 10.1016/j.renene.2019.05.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    2. Hannah Mullings & Samuel Draycott & Jérôme Thiébot & Sylvain Guillou & Philippe Mercier & Jon Hardwick & Ed Mackay & Philipp Thies & Tim Stallard, 2023. "Evaluation of Model Predictions of the Unsteady Tidal Stream Resource and Turbine Fatigue Loads Relative to Multi-Point Flow Measurements at Raz Blanchard," Energies, MDPI, vol. 16(20), pages 1-30, October.
    3. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
    4. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    5. David Menéndez Arán & Ángel Menéndez, 2021. "Surrogate-Based Optimization of Horizontal Axis Hydrokinetic Turbine Rotor Blades," Energies, MDPI, vol. 14(13), pages 1-16, July.
    6. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    7. Wang, Longyan & Xu, Jian & Luo, Wei & Luo, Zhaohui & Xie, Junhang & Yuan, Jianping & Tan, Andy C.C., 2022. "A deep learning-based optimization framework of two-dimensional hydrofoils for tidal turbine rotor design," Energy, Elsevier, vol. 253(C).
    8. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "An investigation of tidal turbine performance and loads under various turbulence conditions using Blade Element Momentum theory and high-frequency field data acquired in two prospective tidal energy s," Renewable Energy, Elsevier, vol. 201(P1), pages 928-937.
    9. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:408-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.