IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1397-1405.html
   My bibliography  Save this article

MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: Low Pt content, selectivity and chemical stability

Author

Listed:
  • Parreira, Luanna S.
  • Antoniassi, Rodolfo M.
  • Freitas, Isabel C.
  • de Oliveira, Daniela C.
  • Spinacé, Estevam V.
  • Camargo, Pedro H.C.
  • dos Santos, Mauro C.

Abstract

PtSnNi electrocatalysts (60: 40: 40 mass ratio) supported on Vulcan® XC-72 (Cabot) carbon and COOH-functionalized multiwalled carbon nanotubes (Cheaptubes®) with 15% of metal loading were prepared. The nanoparticles size of 2–3 nm for both supports was estimated by HRTEM. In the direct ethanol fuel cell experiments, PtSnNi/C presents 50 mA cm−2 reaching the maximum power density (MPD) of 12 mW cm−2 and decreasing at higher currents, while PtSnNi/MWCNT-COOH obtains similar values of MPD (60 mA cm−2), but keeping the best performance. By GC (gas chromatography) technique, it was possible to observe that the electrocatalyst supported on MWCNT-COOH favored the ethanol oxidation to acetaldehyde and acetic acid, although the material supported on Vulcan® XC-72 carbon presented almost 100% of selectivity for acetaldehyde. This behavior was maintained also when the current of 0.1 A was applied for 80 min. For the PtSnNi/C electrocatalyst, the selectivity to only acetaldehyde can be related to Sn and Ni dissolution process that can become the electrocatalytic activity similar to Pt/C, decreasing the power density as observed in our experiments. Established by EDS analysis, after 80 min of polarization, the Ni and Sn relative atomic ratio was lower on the catalytic anodic layer of PtSnNi/C than on PtSnNi/MWCNT-COOH.

Suggested Citation

  • Parreira, Luanna S. & Antoniassi, Rodolfo M. & Freitas, Isabel C. & de Oliveira, Daniela C. & Spinacé, Estevam V. & Camargo, Pedro H.C. & dos Santos, Mauro C., 2019. "MWCNT-COOH supported PtSnNi electrocatalysts for direct ethanol fuel cells: Low Pt content, selectivity and chemical stability," Renewable Energy, Elsevier, vol. 143(C), pages 1397-1405.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1397-1405
    DOI: 10.1016/j.renene.2019.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811930727X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    2. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    3. Massimo Sicilia & Davide Cervone & Pierpaolo Polverino & Cesare Pianese, 2024. "Advancements on Lumped Modelling of Membrane Water Content for Real-Time Prognostics and Control of PEMFC," Energies, MDPI, vol. 17(19), pages 1-20, September.
    4. Ding, Gaoya & Cao, Xuewen & Chen, Junwen & Zhang, Yue & Bian, Jiang, 2024. "Impact of the expansion ratio on the properties of hydrogen recirculation ejectors," Applied Energy, Elsevier, vol. 374(C).
    5. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    6. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    7. Lyubov Slotyuk & Florian Part & Moritz-Caspar Schlegel & Floris Akkerman, 2024. "Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    8. Go, Jaehyun & Byun, Jiwook & Orehounig, Kristina & Heo, Yeonsook, 2023. "Battery-H2 storage system for self-sufficiency in residential buildings under different electric heating system scenarios," Applied Energy, Elsevier, vol. 337(C).
    9. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    10. Guerrero Moreno, Nayibe & Cisneros Molina, Myriam & Gervasio, Dominic & Pérez Robles, Juan Francisco, 2015. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 897-906.
    11. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    12. Nam, Le Vu & Choi, Eunho & Jang, Segeun & Kim, Sang Moon, 2021. "Patterned mesoporous TiO2 microplates embedded in Nafion® membrane for high temperature/low relative humidity polymer electrolyte membrane fuel cell operation," Renewable Energy, Elsevier, vol. 180(C), pages 203-212.
    13. Su Zhou & Jie Jin & Yuehua Wei, 2021. "Research on Online Diagnosis Method of Fuel Cell Centrifugal Air Compressor Surge Fault," Energies, MDPI, vol. 14(11), pages 1-15, May.
    14. Kannan, Vishvak & Xue, Hansong & Raman, K. Ashoke & Chen, Jiasheng & Fisher, Adrian & Birgersson, Erik, 2020. "Quantifying operating uncertainties of a PEMFC – Monte Carlo-machine learning based approach," Renewable Energy, Elsevier, vol. 158(C), pages 343-359.
    15. Martin, S. & Garcia-Ybarra, P.L. & Castillo, J.L., 2017. "Long-term operation of a proton exchange membrane fuel cell without external humidification," Applied Energy, Elsevier, vol. 205(C), pages 1012-1020.
    16. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Xiao Tang & Chunsheng Wang & Yukun Hu & Zijian Liu & Feiliang Li, 2021. "Adaptive Fuzzy PID Based on Granular Function for Proton Exchange Membrane Fuel Cell Oxygen Excess Ratio Control," Energies, MDPI, vol. 14(4), pages 1-18, February.
    18. Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
    19. Jingbo Liu & Yuan Yuan & Sajid Bashir, 2013. "Functionalization of Aligned Carbon Nanotubes to Enhance the Performance of Fuel Cell," Energies, MDPI, vol. 6(12), pages 1-11, December.
    20. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1397-1405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.