IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp330-344.html
   My bibliography  Save this article

Effect of short cloud shading on the performance of parabolic trough solar power plants: motorized vs manual valves

Author

Listed:
  • Abutayeh, Mohammad
  • Padilla, Ricardo Vasquez
  • Lake, Maree
  • Lim, Yee Yan
  • Garcia, Jesus
  • Sedighi, Mohammadreza
  • Soo Too, Yen Chean
  • Jeong, Kwangkook

Abstract

This paper uses a dynamic bio-inspired model to simulate cloud movement over a parabolic trough collector solar field. Time-stamped spatially varying solar radiation records resulting from that dynamic model are successively fed into an instantaneous flow distribution model of the same solar field. Two different flow control strategies are simulated to evaluate and compare their impact on plant performance. One strategy employs manual balancing valves resulting in an uneven exit temperature from each loop during cloud cover periods. The other strategy employs motorized balancing valves that constantly adjust to achieve a common desired exit temperature from each loop during cloud cover periods. Model output of both strategies under four different cloud shading conditions are compared. Simulation results showed that employing motorized balancing valves will result in a more efficient operation involving less pressure drop, higher outlet temperature and less pumping load; however, the rate of power generation was almost the same in both strategies.

Suggested Citation

  • Abutayeh, Mohammad & Padilla, Ricardo Vasquez & Lake, Maree & Lim, Yee Yan & Garcia, Jesus & Sedighi, Mohammadreza & Soo Too, Yen Chean & Jeong, Kwangkook, 2019. "Effect of short cloud shading on the performance of parabolic trough solar power plants: motorized vs manual valves," Renewable Energy, Elsevier, vol. 142(C), pages 330-344.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:330-344
    DOI: 10.1016/j.renene.2019.04.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Jesús M. & Padilla, Ricardo Vasquez & Sanjuan, Marco E., 2016. "A biomimetic approach for modeling cloud shading with dynamic behavior," Renewable Energy, Elsevier, vol. 96(PA), pages 157-166.
    2. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2015. "Assessment of direct normal irradiance and cloud connections using satellite data over Australia," Applied Energy, Elsevier, vol. 143(C), pages 301-311.
    3. Ashley, Thomas & Carrizosa, Emilio & Fernández-Cara, Enrique, 2017. "Optimisation of aiming strategies in Solar Power Tower plants," Energy, Elsevier, vol. 137(C), pages 285-291.
    4. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
    2. Song, Yuhui & Wang, Jiaxing & Zhang, Junli & Li, Yiguo, 2024. "Temperature homogenization control of parabolic trough solar collector field based on hydraulic calculation and extended Kalman filter," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
    2. García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez-Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2022. "Transient simulation of a control strategy for solar receivers based on mass flow valves adjustments and heliostats aiming," Renewable Energy, Elsevier, vol. 185(C), pages 1221-1244.
    3. Ruidi Zhu & Dong Ni, 2023. "A Model Predictive Control Approach for Heliostat Field Power Regulatory Aiming Strategy under Varying Cloud Shadowing Conditions," Energies, MDPI, vol. 16(7), pages 1-19, March.
    4. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    5. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    6. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    7. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    9. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    10. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    11. Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
    12. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    13. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    14. García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2020. "Aiming clusters of heliostats over solar receivers for distributing heat flux using one variable per group," Renewable Energy, Elsevier, vol. 160(C), pages 584-596.
    15. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    17. Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
    18. Zhang, Huili & Benoit, Hadrien & Gauthier, Daniel & Degrève, Jan & Baeyens, Jan & López, Inmaculada Pérez & Hemati, Mehrdji & Flamant, Gilles, 2016. "Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations," Applied Energy, Elsevier, vol. 161(C), pages 206-224.
    19. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    20. Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:330-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.