Effect of short cloud shading on the performance of parabolic trough solar power plants: motorized vs manual valves
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.04.094
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- García, Jesús M. & Padilla, Ricardo Vasquez & Sanjuan, Marco E., 2016. "A biomimetic approach for modeling cloud shading with dynamic behavior," Renewable Energy, Elsevier, vol. 96(PA), pages 157-166.
- Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
- Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2015. "Assessment of direct normal irradiance and cloud connections using satellite data over Australia," Applied Energy, Elsevier, vol. 143(C), pages 301-311.
- Ashley, Thomas & Carrizosa, Emilio & Fernández-Cara, Enrique, 2017. "Optimisation of aiming strategies in Solar Power Tower plants," Energy, Elsevier, vol. 137(C), pages 285-291.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
- Song, Yuhui & Wang, Jiaxing & Zhang, Junli & Li, Yiguo, 2024. "Temperature homogenization control of parabolic trough solar collector field based on hydraulic calculation and extended Kalman filter," Renewable Energy, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
- García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez-Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2022. "Transient simulation of a control strategy for solar receivers based on mass flow valves adjustments and heliostats aiming," Renewable Energy, Elsevier, vol. 185(C), pages 1221-1244.
- Ruidi Zhu & Dong Ni, 2023. "A Model Predictive Control Approach for Heliostat Field Power Regulatory Aiming Strategy under Varying Cloud Shadowing Conditions," Energies, MDPI, vol. 16(7), pages 1-19, March.
- Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
- Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
- Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
- Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
- García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2020. "Aiming clusters of heliostats over solar receivers for distributing heat flux using one variable per group," Renewable Energy, Elsevier, vol. 160(C), pages 584-596.
- Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
- Jahani, Babak & Dinpashoh, Y. & Raisi Nafchi, Atefeh, 2017. "Evaluation and development of empirical models for estimating daily solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 878-891.
- Speetzen, N. & Richter, P., 2021. "Dynamic aiming strategy for central receiver systems," Renewable Energy, Elsevier, vol. 180(C), pages 55-67.
- Jesús-Ignacio Prieto & David García & Ruth Santoro, 2022. "Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global Solar Radiation Models: Application to the Solar Map of Asturias," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
- Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
- Sánchez-González, Alberto & Rodríguez-Sánchez, María Reyes & Santana, Domingo, 2018. "Aiming factor to flatten the flux distribution on cylindrical receivers," Energy, Elsevier, vol. 153(C), pages 113-125.
- Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
- Qiu, Rangjian & Li, Longan & Wu, Lifeng & Agathokleous, Evgenios & Liu, Chunwei & Zhang, Baozhong & Luo, Yufeng & Sun, Shanlei, 2022. "Modeling daily global solar radiation using only temperature data: Past, development, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
- Huang, Shoujun & Abedinia, Oveis, 2021. "Investigation in economic analysis of microgrids based on renewable energy uncertainty and demand response in the electricity market," Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Agent-based model; Concentrating solar power; Parabolic trough collectors; Heat transfer fluid; Cloud shading; Flow balance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:330-344. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.