IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp208-217.html
   My bibliography  Save this article

Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter

Author

Listed:
  • Zhong, Hanbin
  • Xu, Fei
  • Zhang, Juntao
  • Zhu, Yuqin
  • Liang, Shengrong
  • Niu, Ben
  • Zhang, Xinyu

Abstract

The multi-fluid model (MFM) has been widely used in computational fluid dynamics (CFD) simulation of biomass fast pyrolysis in the fluidized bed. After considering the variation of particle density and diameter, the Geldart classification of the formed char particles may be different with that of the virgin biomass particles due to the decrease of particle density and diameter. Thus, two or more Geldart group particles may be found in one solid phase. Normally, different gas-solid models are recommended for different Geldart particles. Therefore, in order to account the gas-solid drag of a specified solid phase with various Geldart particles, the present work applied the classification method proposed by Grace to determine the real-time particle classification in each computational cell during MFM simulation. A monotonic function which can avoid the potential discontinuous behavior was developed to combine different drag models from the inspiration of Lu-Gidaspow model. Based on the combined gas-solid drag model, the application of different drag models to the different Geldart particles in one solid phase was realized in the MFM. This method provides an option to precisely describe the gas-solid drag of the gas-solid fluidized bed reactor with the variation of Geldart classification in a specified solid phase.

Suggested Citation

  • Zhong, Hanbin & Xu, Fei & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2019. "Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter," Renewable Energy, Elsevier, vol. 135(C), pages 208-217.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:208-217
    DOI: 10.1016/j.renene.2018.11.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rezaei, Hamid & Sokhansanj, Shahab & Bi, Xiaotao & Lim, C. Jim & Lau, Anthony, 2017. "A numerical and experimental study on fast pyrolysis of single woody biomass particles," Applied Energy, Elsevier, vol. 198(C), pages 320-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    2. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.
    3. Du, Shaohua & Yuan, Shouzheng & Zhou, Qiang, 2021. "Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 172(C), pages 424-439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqi, Hammad & Kumari, Usha & Biswas, Subrata & Mishra, Asmita & Meikap, B.C., 2020. "A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste," Energy, Elsevier, vol. 204(C).
    2. Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
    3. Gupta, Ankita & Siddiqui, Haseen & Rathi, Shivam & Mahajani, Sanjay, 2021. "Intra-pellet transport limitations in the pyrolysis of raintree leaves litter," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:208-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.