IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp1260-1269.html
   My bibliography  Save this article

Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system

Author

Listed:
  • Kim, Sung-Jae
  • Koo, Weoncheol
  • Shin, Min-Jae

Abstract

This study examined the performance of a hemispherical point-absorber wave energy converter (WEC) with a hydraulic power take-off (PTO) system. The hydraulic PTO system for power generation was modeled as an approximate coulomb damping force, which was recently proposed to reduce numerical error. To examine the hydrodynamic performance of the WEC, a three-dimensional frequency-domain numerical wave tank technique was adopted, in which the wave radiation problem and diffraction problem for a hemispherical buoy were solved in succession to obtain the hydrodynamic coefficients. The Cummins equation was also adopted to simulate the buoy displacement and extracted wave power in the time domain. For comparison, a three-dimensional wave tank experiment was conducted. Various viscous damping and energy loss from WEC system and hydraulic cylinder pressure of the PTO system were measured from the experimental results, and these values were added to the governing equation of buoy motion. Therefore, the final numerical model of the WEC system contained the viscous damping and hydraulic PTO forces as well as the potential-flow-based hydrodynamic coefficients. Using the developed numerical model, the hemispheric buoy displacement and extracted wave power were calculated for various hydraulic pressures and input wave conditions to determine the optimal conditions for the maximum wave power.

Suggested Citation

  • Kim, Sung-Jae & Koo, Weoncheol & Shin, Min-Jae, 2019. "Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system," Renewable Energy, Elsevier, vol. 135(C), pages 1260-1269.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1260-1269
    DOI: 10.1016/j.renene.2018.09.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    2. Markel Penalba & Nathan P. Sell & Andy J. Hillis & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part I: The Hydraulic Transmission System," Energies, MDPI, vol. 10(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    2. Wei Zhang & Shizhen Li & Yanjun Liu & Detang Li & Qin He, 2020. "Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform," Energies, MDPI, vol. 13(11), pages 1-17, June.
    3. Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
    4. Gao, Hong & Xiao, Jie, 2021. "Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system," Applied Energy, Elsevier, vol. 299(C).
    5. Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
    6. Berrio, Y. & Rivillas-Ospina, G. & Ruiz-Martínez, G. & Arango-Manrique, A. & Ricaurte, C. & Mendoza, E. & Silva, R. & Casas, D. & Bolívar, M. & Díaz, K., 2023. "Energy conversion and beach protection: Numerical assessment of a dual-purpose WEC farm," Renewable Energy, Elsevier, vol. 219(P2).
    7. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    8. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    9. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    10. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.
    11. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    12. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhigang Liu & Jin Wang & Tao Tao & Ziyun Zhang & Siyi Chen & Yang Yi & Shuang Han & Yongqian Liu, 2023. "Wave Power Prediction Based on Seasonal and Trend Decomposition Using Locally Weighted Scatterplot Smoothing and Dual-Channel Seq2Seq Model," Energies, MDPI, vol. 16(22), pages 1-17, November.
    2. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    3. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    4. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    5. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    6. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    7. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    8. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    9. Chen, Weixing & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2023. "A bio-inspired foldable-wing wave energy converter for ocean robots," Applied Energy, Elsevier, vol. 334(C).
    10. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    11. Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
    12. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    13. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    14. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    15. Satymov, Rasul & Bogdanov, Dmitrii & Dadashi, Mojtaba & Lavidas, George & Breyer, Christian, 2024. "Techno-economic assessment of global and regional wave energy resource potentials and profiles in hourly resolution," Applied Energy, Elsevier, vol. 364(C).
    16. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    17. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    18. Siegel, Stefan G., 2019. "Numerical benchmarking study of a Cycloidal Wave Energy Converter," Renewable Energy, Elsevier, vol. 134(C), pages 390-405.
    19. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    20. Tom, N.M. & Lawson, M.J. & Yu, Y.H. & Wright, A.D., 2016. "Development of a nearshore oscillating surge wave energy converter with variable geometry," Renewable Energy, Elsevier, vol. 96(PA), pages 410-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1260-1269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.