IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v12y1997i4p409-417.html
   My bibliography  Save this article

Solar sorption refrigerator

Author

Listed:
  • Critoph, R.E.
  • Tamainot-Telto, Z.
  • Munyebvu, E.

Abstract

The performance of a solar sorption refrigerator is studied experimentally for three configurations of its collector cover: with single glazing, with double glazing and with single glazing plus transparent insulation. The collector consists of fifteen stainless steel tubes having a selective surface (with good thermal absorption coefficient) and contains granular activated carbon adsorbent with ammonia refrigerant. The collector surface area is approximately 1.43 m2 and contains about 17 kg of carbon. The collector operates with good efficiency (36 to 47% depending on conditions) when in the single glazing configuration.

Suggested Citation

  • Critoph, R.E. & Tamainot-Telto, Z. & Munyebvu, E., 1997. "Solar sorption refrigerator," Renewable Energy, Elsevier, vol. 12(4), pages 409-417.
  • Handle: RePEc:eee:renene:v:12:y:1997:i:4:p:409-417
    DOI: 10.1016/S0960-1481(97)00067-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148197000670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(97)00067-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Critoph, R.E., 1996. "Towards a one tonne per day solar ice maker," Renewable Energy, Elsevier, vol. 9(1), pages 626-631.
    2. Critoph, R.E., 1994. "An ammonia carbon solar refrigerator for vaccine cooling," Renewable Energy, Elsevier, vol. 5(1), pages 502-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamainot-Telto, Z. & Critoph, R.E., 1999. "Solar sorption refrigerator using a CPC collector," Renewable Energy, Elsevier, vol. 16(1), pages 735-738.
    2. Dai, Y.J. & Sumathy, K., 2003. "Heat and mass transfer in the adsorbent of a solar adsorption cooling system with glass tube insulation," Energy, Elsevier, vol. 28(14), pages 1511-1527.
    3. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    4. Lu, Z.S. & Wang, R.Z., 2014. "Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source," Renewable Energy, Elsevier, vol. 63(C), pages 445-451.
    5. Islam, Md. Parvez & Morimoto, Tetsuo, 2014. "A new zero energy cool chamber with a solar-driven adsorption refrigerator," Renewable Energy, Elsevier, vol. 72(C), pages 367-376.
    6. Wang, Liwei & Ziegler, Felix & Roskilly, Anthony Paul & Wang, Ruzhu & Wang, Yaodong, 2013. "A resorption cycle for the cogeneration of electricity and refrigeration," Applied Energy, Elsevier, vol. 106(C), pages 56-64.
    7. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    8. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Critoph, R.E., 1999. "Rapid cycling solar/biomass powered adsorption refrigeration system," Renewable Energy, Elsevier, vol. 16(1), pages 673-678.
    2. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    3. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    4. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    5. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    6. El Fadar, A. & Mimet, A. & Pérez-García, M., 2009. "Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe," Renewable Energy, Elsevier, vol. 34(10), pages 2271-2279.
    7. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    8. Li, C. & Wang, R.Z. & Wang, L.W. & Li, T.X. & Chen, Y., 2013. "Experimental study on an adsorption icemaker driven by parabolic trough solar collector," Renewable Energy, Elsevier, vol. 57(C), pages 223-233.
    9. Lucia, Umberto, 2013. "Adsorber efficiency in adsorbtion refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 570-575.
    10. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
    11. Boubakri, A., 2006. "Performance of an adsorptive solar ice maker operating with a single double function heat exchanger (evaporator/condenser)," Renewable Energy, Elsevier, vol. 31(11), pages 1799-1812.
    12. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    13. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    14. Li, C.H. & Wang, R.Z. & Dai, Y.J., 2003. "Simulation and economic analysis of a solar-powered adsorption refrigerator using an evacuated tube for thermal insulation," Renewable Energy, Elsevier, vol. 28(2), pages 249-269.
    15. Alghoul, M.A. & Sulaiman, M.Y. & Sopian, K. & Azmi, B.Z., 2009. "Performance of a dual-purpose solar continuous adsorption system," Renewable Energy, Elsevier, vol. 34(3), pages 920-927.
    16. Choudhury, B. & Chatterjee, P.K. & Sarkar, J.P., 2010. "Review paper on solar-powered air-conditioning through adsorption route," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2189-2195, October.
    17. Lemmini, F. & Errougani, A., 2005. "Building and experimentation of a solar powered adsorption refrigerator," Renewable Energy, Elsevier, vol. 30(13), pages 1989-2003.
    18. Sharafian, Amir & Nemati Mehr, Seyyed Mahdi & Thimmaiah, Poovanna Cheppudira & Huttema, Wendell & Bahrami, Majid, 2016. "Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications," Energy, Elsevier, vol. 112(C), pages 481-493.
    19. Enibe, S.O., 1997. "Solar refrigeration for rural applications," Renewable Energy, Elsevier, vol. 12(2), pages 157-167.
    20. Lemmini, Fatiha & Errougani, Abdelmoussehel, 2007. "Experimentation of a solar adsorption refrigerator in Morocco," Renewable Energy, Elsevier, vol. 32(15), pages 2629-2641.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:12:y:1997:i:4:p:409-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.