IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp102-113.html
   My bibliography  Save this article

A comparative investigation on in-situ and laboratory standard test of the potential induced degradation of crystalline silicon photovoltaic modules

Author

Listed:
  • Islam, M.A.
  • Hasanuzzaman, M.
  • Rahim, Nasrudin Abd

Abstract

Potential induced degradation (PID) is one of the genuinely critical concerns of a sustainable power generation from a PV system. Generally, the PID behavior of a PV module is tested in the laboratory according to the IEC standard before installation into a plant. On the other hand, an electroluminescence imaging is a reliable technique to identify the different types of PV cell defects which cause the degradation of the PV modules. The aim of this research is to investigate the PID behavior of similar PV modules in both the real on-site test and the laboratory standard test conditions. This will facilitate the outcome of the tangible indoor PID test results with more ease and reliability. It has been observed from the EL images of the on-site degraded PV module that a performance degradation happens due to different types of PV cell defects, such as, localized shunting, cracks, front contact grid interruptions, etc. The maximum power versus EL mean intensity shows a linear relationship which predicts the quantitative performance analysis of a PV module from an EL imaging process. The PID of a PV module has been found in a negative voltage stress condition in both the on-site and the laboratory tests. The shunt resistance gradually decreases as a consequence of the negative voltage stress only. The on-site degradation levels of the Pmax, Voc, Isc, and FF are 46.5, 7.15, 30.4, and 17.35% respectively after a duration of nearly 11 years of a negative voltage stress generated from a 240 V string size. In a laboratory PID test, the Pmax, Voc, Isc, and FF are degraded due to a negative voltage stress with a value of 6.83%, 1.9%, 1.5%, and 3.5% respectively.

Suggested Citation

  • Islam, M.A. & Hasanuzzaman, M. & Rahim, Nasrudin Abd, 2018. "A comparative investigation on in-situ and laboratory standard test of the potential induced degradation of crystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 127(C), pages 102-113.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:102-113
    DOI: 10.1016/j.renene.2018.04.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    4. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofiane Boulhidja & Adel Mellit & Sebastian Voswinckel & Vanni Lughi & Alessandro Ciocia & Filippo Spertino & Alessandro Massi Pavan, 2020. "Experimental Evidence of PID Effect on CIGS Photovoltaic Modules," Energies, MDPI, vol. 13(3), pages 1-16, January.
    2. Jingsheng Huang & Yaojie Sun & He Wang & Junjun Zhang, 2019. "Regular and Irregular Performance Variation of Module String and Occurred Conditions for Potential Induced Degradation-Affected Crystalline Silicon Photovoltaic Power Plants," Energies, MDPI, vol. 12(22), pages 1-13, November.
    3. Dhimish, Mahmoud & Ahmad, Ameer & Tyrrell, Andy M., 2022. "Inequalities in photovoltaics modules reliability: From packaging to PV installation site," Renewable Energy, Elsevier, vol. 192(C), pages 805-814.
    4. Oscar Kwame Segbefia & Tor Oskar Sætre, 2022. "Investigation of the Temperature Sensitivity of 20-Years Old Field-Aged Photovoltaic Panels Affected by Potential Induced Degradation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    5. Mahmoud Dhimish & Yihua Hu & Nigel Schofield & Romênia G. Vieira, 2020. "Mitigating Potential-Induced Degradation (PID) Using SiO 2 ARC Layer," Energies, MDPI, vol. 13(19), pages 1-12, October.
    6. Clavijo-Blanco, J.A. & Álvarez-Tey, G. & Saborido-Barba, N. & Barberá-González, J.L. & García-López, C. & Jiménez-Castañeda, R., 2021. "Laboratory tests for the evaluation of the degradation of a photovoltaic plant of 2.85 MWp with different classes of PV modules," Renewable Energy, Elsevier, vol. 174(C), pages 262-277.
    7. do Nascimento, Lucas Rafael & Braga, Marília & Campos, Rafael Antunes & Naspolini, Helena Flávia & Rüther, Ricardo, 2020. "Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1070-1082.
    8. Qaisieh, Alaa & Abu-Nabah, Bassam A. & Hamdan, Mohammad O. & Alami, Abdul Hai & Khanfar, Layla & Zaki, Laila, 2023. "Optical characterization of accumulated dust particles and the sustainability of transmitted solar irradiance to photovoltaic cells," Renewable Energy, Elsevier, vol. 219(P1).
    9. Wang, Ping & Kong, Meiya & Du, Wei & Wang, Linhong & Ni, Lei, 2020. "The effect of pollutants on leakage current and power degradation of photovoltaic modules," Renewable Energy, Elsevier, vol. 146(C), pages 2668-2675.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    2. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    3. Maruthi Prasad, R. & Krishnamoorthy, A., 2018. "Design, construction, testing and performance of split power solar source using mirror photovoltaic glass for electric vehicles," Energy, Elsevier, vol. 145(C), pages 374-387.
    4. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    5. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    6. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
    7. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    9. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    10. Kumar, Manish & Kumar, Arun, 2019. "Experimental validation of performance and degradation study of canal-top photovoltaic system," Applied Energy, Elsevier, vol. 243(C), pages 102-118.
    11. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    12. Nahar, Afroza & Hasanuzzaman, M. & Rahim, N.A. & Parvin, S., 2019. "Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems," Renewable Energy, Elsevier, vol. 132(C), pages 284-295.
    13. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    14. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    15. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    16. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    17. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    18. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    19. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    20. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:102-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.