IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp291-300.html
   My bibliography  Save this article

How do PV households use their PV system and how is this related to their energy use?

Author

Listed:
  • Wittenberg, Inga
  • Matthies, Ellen

Abstract

Owning a PV system, households take part in electricity production which might change their electricity use, but so far, their daily life use of electricity and monitoring has not been researched in depth. Therefore, the way PV households monitor their PV system and how their monitoring is related to energy use was investigated. More precisely, the role of active monitoring (e.g., note down electricity data or use of online portals for data treatment) in energy use by means of load shifting activities and energy-saving behaviors was studied. Special attention was paid to available devices and different policy frameworks. Participants (N = 425 PV households) were recruited from 15 PV related web-portals and responded to an online questionnaire. The results showed that affinity with technology and available monitoring devices were important predictors for active monitoring. Distinguishing PV households according to the PV installation period, we found that in pre-grid parity PV households, energy-saving behaviors were explained by active monitoring and environmental motivation. In post-grid parity PV households they were mainly influenced by load shifting activities and sufficiency attitudes. This indicates that different policy measures and implied financial incentives can influence PV monitoring and the relevant factors for energy-saving behaviors.

Suggested Citation

  • Wittenberg, Inga & Matthies, Ellen, 2018. "How do PV households use their PV system and how is this related to their energy use?," Renewable Energy, Elsevier, vol. 122(C), pages 291-300.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:291-300
    DOI: 10.1016/j.renene.2018.01.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keirstead, James, 2007. "Behavioural responses to photovoltaic systems in the UK domestic sector," Energy Policy, Elsevier, vol. 35(8), pages 4128-4141, August.
    2. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    3. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    4. Bahaj, A.S. & James, P.A.B., 2007. "Urban energy generation: The added value of photovoltaics in social housing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2121-2136, December.
    5. Hondo, Hiroki & Baba, Kenshi, 2010. "Socio-psychological impacts of the introduction of energy technologies: Change in environmental behavior of households with photovoltaic systems," Applied Energy, Elsevier, vol. 87(1), pages 229-235, January.
    6. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    7. Leenheer, Jorna & de Nooij, Michiel & Sheikh, Omer, 2011. "Own power: Motives of having electricity without the energy company," Energy Policy, Elsevier, vol. 39(9), pages 5621-5629, September.
    8. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    9. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    10. Hoppmann, Joern & Huenteler, Joern & Girod, Bastien, 2014. "Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power," Research Policy, Elsevier, vol. 43(8), pages 1422-1441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lu & Xie, Pengli & Bi, Chongke & Zhang, Ronghui & Cai, Bowen & Shao, Xiaowei & Wang, Rongben, 2020. "Household power consumption pattern modeling through a single power sensor," Renewable Energy, Elsevier, vol. 155(C), pages 121-133.
    2. Takahiro Ueno, 2022. "Capturing Changes in Residential Occupant Behavior Due to Work from Home in Japan as a Consequence of the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    3. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    4. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    5. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    2. Nakada, Tatsuhiro & Shin, Kongjoo & Managi, Shunsuke, 2016. "The effect of demand response on purchase intention of distributed generation: Evidence from Japan," Energy Policy, Elsevier, vol. 94(C), pages 307-316.
    3. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    4. Berka, Anna L. & Creamer, Emily, 2018. "Taking stock of the local impacts of community owned renewable energy: A review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3400-3419.
    5. Hansen, Anders Rhiger & Jacobsen, Mette Hove & Gram-Hanssen, Kirsten, 2022. "Characterizing the Danish energy prosumer: Who buys solar PV systems and why do they buy them?," Ecological Economics, Elsevier, vol. 193(C).
    6. Gautier, Axel & Hoet, Brieuc & Jacqmin, Julien & Van Driessche, Sarah, 2019. "Self-consumption choice of residential PV owners under net-metering," Energy Policy, Elsevier, vol. 128(C), pages 648-653.
    7. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    8. Ingo Kastner & Inga Wittenberg, 2019. "How Measurements “Affect” the Importance of Social Influences on Household’s Photovoltaic Adoption—A German Case Study," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    9. Vögele, Stefan & Poganietz, Witold-Roger & Kleinebrahm, Max & Weimer-Jehle, Wolfgang & Bernhard, Jesse & Kuckshinrichs, Wilhelm & Weiss, Annika, 2022. "Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives," Energy, Elsevier, vol. 248(C).
    10. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    11. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    12. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    13. Fikru, Mahelet G., 2019. "Estimated electricity bill savings for residential solar photovoltaic system owners: Are they accurate enough?," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. José Ángel Gimeno & Eva Llera & Sabina Scarpellini, 2018. "Investment Determinants in Self-Consumption Facilities: Characterization and Qualitative Analysis in Spain," Energies, MDPI, vol. 11(8), pages 1-24, August.
    15. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    16. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    17. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    18. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    19. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    20. Karen Bickerstaff & Emma Hinton & Harriet Bulkeley, 2016. "Decarbonisation at home: The contingent politics of experimental domestic energy technologies," Environment and Planning A, , vol. 48(10), pages 2006-2025, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:291-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.