IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i1p229-235.html
   My bibliography  Save this article

Socio-psychological impacts of the introduction of energy technologies: Change in environmental behavior of households with photovoltaic systems

Author

Listed:
  • Hondo, Hiroki
  • Baba, Kenshi

Abstract

After installing a photovoltaic (PV) system in a house or a school, it is said that people seem to increase behavior that shows concern for the environment such as saving electricity. Do characteristics of PV systems have any influence on the change in people's behavior? This study attempts to discover why people's behavior toward energy and the environment change after installing a PV system. Based on questionnaire surveys, this paper describes the results of statistical analysis concerning the changes in households that installed PV systems. The results show that in households where the family members are highly aware of their PV systems they tend to increase environmental behavior after installing the PV system. It is also found that an increase in communication about environmental behavior in a family tends to go hand-in-hand with the increase in environmental behavior. The findings suggest that the installation of residential PV systems affect people's concern and norms related to energy and the environment, and consequently influences people's behavior.

Suggested Citation

  • Hondo, Hiroki & Baba, Kenshi, 2010. "Socio-psychological impacts of the introduction of energy technologies: Change in environmental behavior of households with photovoltaic systems," Applied Energy, Elsevier, vol. 87(1), pages 229-235, January.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:1:p:229-235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00201-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    2. Ueno, Tsuyoshi & Inada, Ryo & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system for residential buildings," Applied Energy, Elsevier, vol. 83(8), pages 868-883, August.
    3. Chapman, Peter F., 1975. "Energy analysis of nuclear power stations," Energy Policy, Elsevier, vol. 3(4), pages 285-298, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    2. Schneider, E. & Carlsen, B. & Tavrides, E. & van der Hoeven, C. & Phathanapirom, U., 2013. "Measures of the environmental footprint of the front end of the nuclear fuel cycle," Energy Economics, Elsevier, vol. 40(C), pages 898-910.
    3. Musango, Josephine K. & Brent, Alan C., 2011. "Assessing the sustainability of energy technological systems in Southern Africa: A review and way forward," Technology in Society, Elsevier, vol. 33(1), pages 145-155.
    4. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    5. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    6. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    7. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    8. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    9. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    10. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    11. Varun & Prakash, Ravi & Bhat, I.K., 2010. "A figure of merit for evaluating sustainability of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1640-1643, August.
    12. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    13. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    14. Andrej Predin & Matej Fike & Marko Pezdevšek & Gorazd Hren, 2021. "Lost Energy of Water Spilled over Hydropower Dams," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    15. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    16. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    17. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems," Energies, MDPI, vol. 9(11), pages 1-13, October.
    18. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    19. Paul E. Hardisty & Tom S. Clark & Robert G. Hynes, 2012. "Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources," Energies, MDPI, vol. 5(4), pages 1-26, March.
    20. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:1:p:229-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.