IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp446-456.html
   My bibliography  Save this article

Sensitivity analysis of observational nudging methodology to reduce error in wind resource assessment (WRA) in the North Sea

Author

Listed:
  • Mylonas, M.P.
  • Barbouchi, S.
  • Herrmann, H.
  • Nastos, P.T.

Abstract

Towards the improvement of the mesoscale modeling for offshore wind application, the real time observational nudging capability of the Weather Research and Forecasting (WRF) model has been implemented aiming for enhanced model performance. Utilizing three different horizontal levels of the offshore meteorological mast, FINO3, in the North Sea, wind speed observations were integrated into the model core. The performance of this modified model was then assessed for three different atmospheric stability conditions. Results from this study, illustrate that for all three stratification cases, there is a significant improvement in model performance when using observational nudging showing a reduction in Root Mean Square Error of up to 27% when compared to the observations from FINO1 platform. This study suggests that observational nudging takes a step towards more accurate simulations in wind resource assessment (WRA).

Suggested Citation

  • Mylonas, M.P. & Barbouchi, S. & Herrmann, H. & Nastos, P.T., 2018. "Sensitivity analysis of observational nudging methodology to reduce error in wind resource assessment (WRA) in the North Sea," Renewable Energy, Elsevier, vol. 120(C), pages 446-456.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:446-456
    DOI: 10.1016/j.renene.2017.12.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
    2. V. Yesubabu & C. Srinivas & S. Ramakrishna & K. Hari Prasad, 2014. "Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2109-2128, December.
    3. Mohammadpour Penchah, Mohammadreza & Malakooti, Hossein & Satkin, Mohammad, 2017. "Evaluation of planetary boundary layer simulations for wind resource study in east of Iran," Renewable Energy, Elsevier, vol. 111(C), pages 1-10.
    4. Cheng, William Y.Y. & Liu, Yubao & Liu, Yuewei & Zhang, Yongxin & Mahoney, William P. & Warner, Thomas T., 2013. "The impact of model physics on numerical wind forecasts," Renewable Energy, Elsevier, vol. 55(C), pages 347-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    2. Kim, Ji-Young & Oh, Ki-Yong & Kim, Min-Suek & Kim, Kwang-Yul, 2019. "Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar," Renewable Energy, Elsevier, vol. 144(C), pages 41-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    2. Perini de Souza, Noele Bissoli & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Wind mapping using the mesoscale WRF model in a tropical region of Brazil," Energy, Elsevier, vol. 240(C).
    3. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    4. Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
    5. Li, Lei & Yin, Xiao-Li & Jia, Xin-Chun & Sobhani, Behrooz, 2020. "Day ahead powerful probabilistic wind power forecast using combined intelligent structure and fuzzy clustering algorithm," Energy, Elsevier, vol. 192(C).
    6. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    7. Omid Alizadeh, 2022. "Advances and challenges in climate modeling," Climatic Change, Springer, vol. 170(1), pages 1-26, January.
    8. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    9. Heydari, Azim & Astiaso Garcia, Davide & Keynia, Farshid & Bisegna, Fabio & De Santoli, Livio, 2019. "A novel composite neural network based method for wind and solar power forecasting in microgrids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    11. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    12. D’Isidoro, Massimo & Briganti, Gino & Vitali, Lina & Righini, Gaia & Adani, Mario & Guarnieri, Guido & Moretti, Lorenzo & Raliselo, Muso & Mahahabisa, Mabafokeng & Ciancarella, Luisella & Zanini, Gabr, 2020. "Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution," Renewable Energy, Elsevier, vol. 158(C), pages 114-129.
    13. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    14. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
    15. Denis E.K. Dzebre & Muyiwa S. Adaramola, 2019. "Impact of Selected Options in the Weather Research and Forecasting Model on Surface Wind Hindcasts in Coastal Ghana," Energies, MDPI, vol. 12(19), pages 1-16, September.
    16. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    17. Lazić, Lazar & Pejanović, Goran & Živković, Momčilo & Ilić, Luka, 2014. "Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method," Energy, Elsevier, vol. 73(C), pages 567-574.
    18. Dzebre, Denis E.K. & Adaramola, Muyiwa S., 2020. "A preliminary sensitivity study of Planetary Boundary Layer parameterisation schemes in the weather research and forecasting model to surface winds in coastal Ghana," Renewable Energy, Elsevier, vol. 146(C), pages 66-86.
    19. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    20. Branko Kosovic & Sue Ellen Haupt & Daniel Adriaansen & Stefano Alessandrini & Gerry Wiener & Luca Delle Monache & Yubao Liu & Seth Linden & Tara Jensen & William Cheng & Marcia Politovich & Paul Prest, 2020. "A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction," Energies, MDPI, vol. 13(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:446-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.