IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp504-512.html
   My bibliography  Save this article

Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

Author

Listed:
  • Hasheminamin, Maryam
  • Agelidis, Vassilios Georgios
  • Ahmadi, Abdollah
  • Siano, Pierluigi
  • Teodorescu, Remus

Abstract

Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient to eliminate VR in the affected network. With SPRPC none of the previous PV inverters need to upgrade and can retain their unity power factor to not to conflict with current grid codes. Comprehensive 24-h simulation studies are done on a modified IEEE 69-bus Network emulating a traditional residential power system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.

Suggested Citation

  • Hasheminamin, Maryam & Agelidis, Vassilios Georgios & Ahmadi, Abdollah & Siano, Pierluigi & Teodorescu, Remus, 2018. "Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration," Renewable Energy, Elsevier, vol. 119(C), pages 504-512.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:504-512
    DOI: 10.1016/j.renene.2017.12.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barzegkar-Ntovom, Georgios A. & Chatzigeorgiou, Nikolas G. & Nousdilis, Angelos I. & Vomva, Styliani A. & Kryonidis, Georgios C. & Kontis, Eleftherios O. & Georghiou, George E. & Christoforidis, Georg, 2020. "Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme," Renewable Energy, Elsevier, vol. 152(C), pages 1302-1309.
    2. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2018. "Optimization of Solar Energy System for the Electric Vehicle at University Campus in Dhaka, Bangladesh," Energies, MDPI, vol. 11(9), pages 1-10, September.
    3. Shailendra Rajput & Ido Amiel & Moshe Sitbon & Ilan Aharon & Moshe Averbukh, 2020. "Control the Voltage Instabilities of Distribution Lines using Capacitive Reactive Power," Energies, MDPI, vol. 13(4), pages 1-12, February.
    4. Massimiliano Chiandone & Riccardo Campaner & Daniele Bosich & Giorgio Sulligoi, 2020. "A Coordinated Voltage and Reactive Power Control Architecture for Large PV Power Plants," Energies, MDPI, vol. 13(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:504-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.