IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp160-171.html
   My bibliography  Save this article

Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system

Author

Listed:
  • Bruno, Arthur M.
  • Chagas, Carlos Alberto
  • Souza, Mariana M.V.M.
  • Manfro, Robinson L.

Abstract

It was investigated the lactic acid (LA) production from glycerol in alkaline medium (NaOH) employing platinum (0.5 wt% PtO2) catalysts supported on Al2O3, ZnO and MgO in continuous flow reaction system over a period of 30 h. Besides the effect of catalyst supports, it was studied the influence of the temperature/pressure and NaOH/glycerol molar ratio. The catalysts were prepared by incipient wetness method and characterized by XRF, XRD, N2 adsorption–desorption, TPR, TPD-CO2 and the dispersion of platinum was determined by H2 chemisorption. The reactions were performed at 200–260 °C, 20–46 atm, with space velocity (WHSV) of 2 h−1, 10 vol% glycerol solution and NaOH/glycerol molar ratio of 0.5, 0.75 and 1.0. The results of the catalytic tests showed that the main liquid products are lactic acid and 1,2-propanediol (1,2-PDO). Using the Pt/ZnO catalyst at 240 °C/35 atm and NaOH/glycerol molar ratio = 1, it was obtained the highest lactic acid selectivity (∼80%) and yield (∼68%). However, in this reaction, the lactic acid yield decreases to around 25% if NaOH/glycerol molar ratio is reduced to 0.5. The highest yield to 1,2-propanediol (18.5%) was obtained with Pt/Al2O3 catalyst that was associated with the acidity of the catalyst. The catalysts showed excellent stability without evidence of deactivation over the evaluated period.

Suggested Citation

  • Bruno, Arthur M. & Chagas, Carlos Alberto & Souza, Mariana M.V.M. & Manfro, Robinson L., 2018. "Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system," Renewable Energy, Elsevier, vol. 118(C), pages 160-171.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:160-171
    DOI: 10.1016/j.renene.2017.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adhikari, Sushil & Fernando, Sandun D. & Haryanto, Agus, 2008. "Hydrogen production from glycerin by steam reforming over nickel catalysts," Renewable Energy, Elsevier, vol. 33(5), pages 1097-1100.
    2. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    3. Menezes, André O. & Rodrigues, Michelly T. & Zimmaro, Adriana & Borges, Luiz E.P. & Fraga, Marco A., 2011. "Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides," Renewable Energy, Elsevier, vol. 36(2), pages 595-599.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    2. Gupta, Mayank & Kumar, Naveen, 2012. "Scope and opportunities of using glycerol as an energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4551-4556.
    3. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    5. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    6. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    7. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    8. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    9. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    10. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    11. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    12. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    13. Azim Baibagyssov & Niels Thevs & Sabir Nurtazin & Rainer Waldhardt & Volker Beckmann & Ruslan Salmurzauly, 2020. "Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects," Resources, MDPI, vol. 9(6), pages 1-25, June.
    14. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    15. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    16. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Breyer, Christian, 2021. "The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana," Renewable Energy, Elsevier, vol. 173(C), pages 297-317.
    17. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    18. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    19. Emily J. Kothe & Mathew Ling & Barbara A. Mullan & Joshua J. Rhee & Anna Klas, 2023. "Increasing intention to reduce fossil fuel use: a protection motivation theory-based experimental study," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    20. Li, Zepei & Huang, Haizhen, 2023. "Challenges for volatility forecasts of US fossil energy spot markets during the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 31-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:160-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.