IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1302-1310.html
   My bibliography  Save this article

Sweet energy – Bioenergy integration pathways for sugarcane residues. A case study of Nkomazi, District of Mpumalanga, South Africa

Author

Listed:
  • Röder, Mirjam
  • Stolz, Nico
  • Thornley, Patricia

Abstract

The South African sugar sector is making important contributions to the national economy in terms of income, employment, land reform and rural development. With fluctuating world market prices for sugar and sharp price increases for electricity the sector is facing several challenges. There is a recognised need to switch to more low carbon and renewable energy carriers and sugarcane residues are becoming of increasing interest. This paper presents exploratory research on community energy demand of integrating bioenergy from sugarcane residues into the sugar value chain. These have been identified during farm visits and stakeholder meetings in Nkomazi, District of Mpumalanga, South Africa. From these, four potential bioenergy integration pathways were highlighted and evaluated. While the pathway with centralised bioenergy generation can provide benefits to the national energy supply, local community-scale bioenergy integration can directly target the development and empowerment of communities and improve their energy security. Assessing the pathways identify that it is necessary to consider carefully: (1) what are the desired outcomes of integrating bioenergy, (2) what are the trade-offs between different sustainability aspects, and (3) who will receive the benefits. This shows the importance of considering context specific and wider socio-economic aspect to identify possible benefits and challenges.

Suggested Citation

  • Röder, Mirjam & Stolz, Nico & Thornley, Patricia, 2017. "Sweet energy – Bioenergy integration pathways for sugarcane residues. A case study of Nkomazi, District of Mpumalanga, South Africa," Renewable Energy, Elsevier, vol. 113(C), pages 1302-1310.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1302-1310
    DOI: 10.1016/j.renene.2017.06.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pegels, Anna, 2010. "Renewable energy in South Africa: Potentials, barriers and options for support," Energy Policy, Elsevier, vol. 38(9), pages 4945-4954, September.
    2. Smithers, Jeff, 2014. "Review of sugarcane trash recovery systems for energy cogeneration in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 915-925.
    3. Mbohwa, Charles, 2003. "Bagasse energy cogeneration potential in the Zimbabwean sugar industry," Renewable Energy, Elsevier, vol. 28(2), pages 191-204.
    4. Manoel Regis Lima Verde Leal & João Guilherme Dal Belo Leite & Mateus Ferreira Chagas & Rui Da Maia & Luís Augusto Barbosa Cortez, 2016. "Feasibility Assessment of Converting Sugar Mills to Bioenergy Production in Africa," Agriculture, MDPI, vol. 6(3), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    2. Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
    3. Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
    4. Visser, Henning & Thopil, George Alex & Brent, Alan, 2019. "Life cycle cost profitability of biomass power plants in South Africa within the international context," Renewable Energy, Elsevier, vol. 139(C), pages 9-21.
    5. Pizzi, A. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Mancini, M. & Toscano, G., 2018. "Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects," Renewable Energy, Elsevier, vol. 121(C), pages 513-520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Mukumba & Shylet Y. Chivanga, 2023. "An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies," Challenges, MDPI, vol. 14(1), pages 1-12, March.
    2. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    3. Jingura, Raphael Muzondiwa & Musademba, Downmore & Kamusoko, Reckson, 2013. "A review of the state of biomass energy technologies in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 652-659.
    4. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    5. Lucy Baker, 2016. "Post-apartheid electricity policy and the emergence of South Africa's renewable energy sector," WIDER Working Paper Series wp-2016-15, World Institute for Development Economic Research (UNU-WIDER).
    6. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    7. Joseph Chambers & James Evans, 2020. "Informal urbanism and the Internet of Things: Reliability, trust and the reconfiguration of infrastructure," Urban Studies, Urban Studies Journal Limited, vol. 57(14), pages 2918-2935, November.
    8. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    9. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    10. Mayr, Dieter & Schmid, Erwin & Trollip, Hilton & Zeyringer, Marianne & Schmidt, Johannes, 2015. "The impact of residential photovoltaic power on electricity sales revenues in Cape Town, South Africa," Utilities Policy, Elsevier, vol. 36(C), pages 10-23.
    11. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil," Energy, Elsevier, vol. 48(1), pages 241-254.
    12. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    13. Jaco P. Weideman & Roula Inglesi-Lotz, 2016. "Structural Breaks in Renewable Energy in South Africa: A Bai and Perron Break Test Application," Working Papers 201636, University of Pretoria, Department of Economics.
    14. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    15. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2019. "Solar thermal electricity in Nigeria: Prospects and challenges," Energy Policy, Elsevier, vol. 128(C), pages 440-448.
    16. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    17. Sunil Indora & Tara C. Kandpal, 2020. "Solar energy for institutional cooking in India: prospects and potential," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7153-7175, December.
    18. Becker, Bastian & Fischer, Doris, 2013. "Promoting renewable electricity generation in emerging economies," Energy Policy, Elsevier, vol. 56(C), pages 446-455.
    19. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    20. Weideman, J. & Inglesi-Lotz, R. & Van Heerden, J., 2017. "Structural breaks in renewable energy in South Africa: A Bai & Perron break test application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 945-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1302-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.