IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp547-560.html
   My bibliography  Save this article

Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters

Author

Listed:
  • Reichert, G.
  • Hartmann, H.
  • Haslinger, W.
  • Oehler, H.
  • Mack, R.
  • Schmidl, C.
  • Schön, C.
  • Schwabl, M.
  • Stressler, H.
  • Sturmlechner, R.
  • Hochenauer, C.

Abstract

Firewood roomheaters are popular, widespread and important for reaching European CO2 emission targets. Since they contribute significantly to local air pollution, they have to be optimized towards minimal emission release, especially in real-life operation. Draught conditions and user behavior, particularly the ignition technique, significantly affect the emission and efficiency performance of firewood roomheaters. This study assessed the effects of the respective parameters experimentally. The results revealed a clear correlation between draught conditions and thermal efficiency. Increased draught conditions up to 48 Pa significantly decreased thermal efficiency by 6%–11% absolutely. However, for gaseous emissions no clear trend was observed. Accordingly, CO and OGC emissions increased at higher draught conditions for one tested roomheater by 30% and 60%, but decreased for two other tested roomheaters by 13%–45%. For PM emissions no effect of increased draught conditions was evident. Top-down ignition technique did not lead to a significant decrease of PM emissions compared to bottom-up ignition. In contrast, bottom-up ignition led to best thermal efficiencies. The use of either spruce or beech as kindling material revealed no significant relevance for the ignition performance.

Suggested Citation

  • Reichert, G. & Hartmann, H. & Haslinger, W. & Oehler, H. & Mack, R. & Schmidl, C. & Schön, C. & Schwabl, M. & Stressler, H. & Sturmlechner, R. & Hochenauer, C., 2017. "Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters," Renewable Energy, Elsevier, vol. 105(C), pages 547-560.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:547-560
    DOI: 10.1016/j.renene.2016.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wöhler, Marius & Andersen, Jes Sig & Becker, Gero & Persson, Henrik & Reichert, Gabriel & Schön, Claudia & Schmidl, Christoph & Jaeger, Dirk & Pelz, Stefan K., 2016. "Investigation of real life operation of biomass room heating appliances – Results of a European survey," Applied Energy, Elsevier, vol. 169(C), pages 240-249.
    2. Míguez, J.L. & Morán, J.C. & Granada, E. & Porteiro, J., 2012. "Review of technology in small-scale biomass combustion systems in the European market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3867-3875.
    3. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    4. Bram, S. & De Ruyck, J. & Lavric, D., 2009. "Using biomass: A system perturbation analysis," Applied Energy, Elsevier, vol. 86(2), pages 194-201, February.
    5. Reichert, G. & Schmidl, C. & Haslinger, W. & Schwabl, M. & Moser, W. & Aigenbauer, S. & Wöhler, M. & Hochenauer, C., 2016. "Investigation of user behavior and assessment of typical operation mode for different types of firewood room heating appliances in Austria," Renewable Energy, Elsevier, vol. 93(C), pages 245-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Reichert & Christoph Schmidl, 2023. "SWOT Analysis of Non-Technical and Technical Measures towards “(Nearly) Zero-Emission Stove Technologies”," Energies, MDPI, vol. 16(3), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    2. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    3. Verma, V.K. & Bram, S. & Delattin, F. & De Ruyck, J., 2013. "Real life performance of domestic pellet boiler technologies as a function of operational loads: A case study of Belgium," Applied Energy, Elsevier, vol. 101(C), pages 357-362.
    4. Roy, Murari Mohon & Dutta, Animesh & Corscadden, Kenny, 2013. "An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace," Applied Energy, Elsevier, vol. 108(C), pages 298-307.
    5. Gabriel Reichert & Christoph Schmidl, 2023. "SWOT Analysis of Non-Technical and Technical Measures towards “(Nearly) Zero-Emission Stove Technologies”," Energies, MDPI, vol. 16(3), pages 1-37, January.
    6. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    7. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    8. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    9. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).
    10. Verma, V.K. & Bram, S. & Vandendael, I. & Laha, P. & Hubin, A. & De Ruyck, J., 2011. "Residential pellet boilers in Belgium: Standard laboratory and real life performance with respect to European standard and quality labels," Applied Energy, Elsevier, vol. 88(8), pages 2628-2634, August.
    11. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    12. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    13. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    14. Nishiguchi, Sho & Tabata, Tomohiro, 2016. "Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1279-1286.
    15. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    16. Illerup, Jytte Boll & Hansen, Brian Brun & Lin, Weigang & Nickelsen, Joachim & Pedersen, Vagn Hvam & Eskerod, Bente & Dam-Johansen, Kim, 2020. "Performance of an automatically controlled wood stove: Thermal efficiency and carbon monoxide emissions," Renewable Energy, Elsevier, vol. 151(C), pages 640-647.
    17. Ryohei Nakamura, 2013. "A New Approach to the Endogenous Correction of Interregional Income Disparity: Extended Interregional IO by Trading Biomass CO2 Credit," ERSA conference papers ersa13p367, European Regional Science Association.
    18. Kuznetsov, G.V. & Syrodoy, S.V. & Borisov, B.V. & Kostoreva, Zh.A. & Gutareva, N. Yu & Kostoreva, A.A., 2023. "Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition," Renewable Energy, Elsevier, vol. 203(C), pages 828-840.
    19. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2012. "Using a choice experiment to estimate the benefits of a reduction of externalities in urban areas with special focus on electrosmog," Applied Economics, Taylor & Francis Journals, vol. 44(3), pages 387-397, January.
    20. Keček, Damira & Mikulić, Davor & Lovrinčević, Željko, 2019. "Deployment of renewable energy: Economic effects on the Croatian economy," Energy Policy, Elsevier, vol. 126(C), pages 402-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:547-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.