IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp94-105.html
   My bibliography  Save this article

Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems

Author

Listed:
  • Xiao, Xiaolong
  • Xiao, Longfei
  • Peng, Tao

Abstract

Converting persistent and renewable wave energy into electricity has been a research focus in recent years. The oscillating-body wave energy converter (WEC) is a promising approach, especially for offshore areas. However, conventional oscillating-body WECs with linear power take-off (PTO) systems are less efficient under off-resonance conditions and have a narrow power capture bandwidth, which has inhibited the commercial application of wave energy. In order to enhance the power capture performance, this study examined oscillating-body WECs with three new types of PTO systems: bistable impulsive PTO, coupled linear PTO, and coupled bistable PTO. Governing equations for the heave motion of a WEC were established based on the linear potential theory by coupling the buoy and PTO systems and were numerically calculated with the fourth-order Runge–Kutta method. The influence of PTO parameters such as the spring constant, stable equilibrium position, and mass ratio on the power capture ratio was investigated. The differences among the WECs with different PTOs were analysed to determine the optimum device. Compared with the linear PTO system, the WEC with the bistable impulse PTO system enhanced the power capture ratio for low-frequency regular waves, and WECs with coupled linear or coupled bistable PTO systems increased the power capture ratio for low-frequency regular waves and expanded the power capture spectrum bandwidth when proper PTO parameters were applied.

Suggested Citation

  • Xiao, Xiaolong & Xiao, Longfei & Peng, Tao, 2017. "Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems," Renewable Energy, Elsevier, vol. 103(C), pages 94-105.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:94-105
    DOI: 10.1016/j.renene.2016.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rhinefrank, K. & Agamloh, E.B. & von Jouanne, A. & Wallace, A.K. & Prudell, J. & Kimble, K. & Aills, J. & Schmidt, E. & Chan, P. & Sweeny, B. & Schacher, A., 2006. "Novel ocean energy permanent magnet linear generator buoy," Renewable Energy, Elsevier, vol. 31(9), pages 1279-1298.
    2. Li, Guang & Belmont, Michael R., 2014. "Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device," Renewable Energy, Elsevier, vol. 69(C), pages 453-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    2. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    3. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    4. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    5. Bohan Wang & Zhiwei Sun & Yuanyuan Zhao & Zhiyan Li & Bohai Zhang & Jiken Xu & Peng Qian & Dahai Zhang, 2024. "The Energy Conversion and Coupling Technologies of Hybrid Wind–Wave Power Generation Systems: A Technological Review," Energies, MDPI, vol. 17(8), pages 1-24, April.
    6. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    7. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    8. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    2. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    3. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Collective control in arrays of wave energy converters," Renewable Energy, Elsevier, vol. 156(C), pages 361-369.
    6. Rafael Guardeño & Agustín Consegliere & Manuel J. López, 2018. "A Study about Performance and Robustness of Model Predictive Controllers in a WEC System," Energies, MDPI, vol. 11(10), pages 1-23, October.
    7. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    8. Harne, R.L. & Schoemaker, M.E. & Dussault, B.E. & Wang, K.W., 2014. "Wave heave energy conversion using modular multistability," Applied Energy, Elsevier, vol. 130(C), pages 148-156.
    9. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    10. Lejerskog, Erik & Boström, Cecilia & Hai, Ling & Waters, Rafael & Leijon, Mats, 2015. "Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site," Renewable Energy, Elsevier, vol. 77(C), pages 9-14.
    11. Hong Li & Bo Zhang & Li Qiu & Shiyu Chen & Jianping Yuan & Jianjun Luo, 2019. "Advection-Based Coordinated Control for Wave-Energy Converter Array," Energies, MDPI, vol. 12(18), pages 1-21, September.
    12. Ekström, Rickard & Ekergård, Boel & Leijon, Mats, 2015. "Electrical damping of linear generators for wave energy converters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 116-128.
    13. Ni, Wenchi & Zhang, Xu & Zhang, Wei & Liang, Shuangling, 2021. "Numerical investigation of adaptive damping control for raft-type wave energy converters," Renewable Energy, Elsevier, vol. 175(C), pages 520-531.
    14. Son, Daewoong & Yeung, Ronald W., 2017. "Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction," Applied Energy, Elsevier, vol. 208(C), pages 571-579.
    15. Krzysztof Kecik & Marcin Kowalczuk, 2021. "Effect of Nonlinear Electromechanical Coupling in Magnetic Levitation Energy Harvester," Energies, MDPI, vol. 14(9), pages 1-16, May.
    16. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "Application of fluid–structure interaction simulation of an ocean wave energy extraction device," Renewable Energy, Elsevier, vol. 33(4), pages 748-757.
    17. Huang, Sy-Ruen & Chen, Hong-Tai & Chung, Chih-Hung & Chu, Chen-Yeon & Li, Gung-Ching & Wu, Chueh-Cheng, 2012. "Multivariable direct-drive linear generators for wave energy," Applied Energy, Elsevier, vol. 100(C), pages 112-117.
    18. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system," Renewable Energy, Elsevier, vol. 33(3), pages 520-529.
    20. Marques Silva, Jorge & Vieira, Susana M. & Valério, Duarte & Henriques, João C.C., 2023. "Model predictive control based on air pressure forecasting of OWC wave power plants," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:94-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.