IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipbp372-379.html
   My bibliography  Save this article

Evolution of a transmission network with high proportion of renewable energy in the future

Author

Listed:
  • Zhang, Wei-qi
  • Zhang, Xin-yan
  • Huang, Shao-wei
  • Xia, Yu-kai
  • Fan, Xiao-chao
  • Mei, Sheng-wei

Abstract

Compared with other traditional energy sources, renewable energy, which results the less pollution and has numerous resources, is a significant factor in addressing the current issues of the serious environmental pollution and the resource depletion. Large-scale renewable energy integrated to the grid could bring change in both morphological structure and operation modes of energy transmission. Therefore, it is necessary to research the evolution mechanism of the future transmission network with a high proportion of the renewable energy. In this paper, an evolution framework of power system with high proportion of renewable energy is proposed. Firstly, a network equivalence and simplification based on power transfer distribution factors (PTDFs) is proposed, which can effectively simplify the decision-making process of evolution of large-scale power system. Then, an annual production simulation (8760 h) which takes into account renewable energy and load fluctuations is used to find out the bottleneck of the power grid. Based on the above methods, evolution strategy of power system with high proportion of renewable energy is studied for finding out optimal expansion strategy. A real power system of Zhejiang province is used as a test system. Test results demonstrate the feasibility of the proposed evolution framework.

Suggested Citation

  • Zhang, Wei-qi & Zhang, Xin-yan & Huang, Shao-wei & Xia, Yu-kai & Fan, Xiao-chao & Mei, Sheng-wei, 2017. "Evolution of a transmission network with high proportion of renewable energy in the future," Renewable Energy, Elsevier, vol. 102(PB), pages 372-379.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:372-379
    DOI: 10.1016/j.renene.2016.10.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
    2. Henry D. Jacoby & John G. Kassakian & Richard Schmalensee, 2013. "The future of the (US) electric grid," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 5, pages 125-139, Edward Elgar Publishing.
    3. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    4. Wu, F.F & Zheng, F.L. & Wen, F.S., 2006. "Transmission investment and expansion planning in a restructured electricity market," Energy, Elsevier, vol. 31(6), pages 954-966.
    5. Li, Xiang & Chen, Guanrong, 2003. "A local-world evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 274-286.
    6. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Okada, Masaki & Onishi, Terumi & Obara, Shin’ya, 2020. "A design algorithm for an electric power system using wide-area interconnection of renewable energy," Energy, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.
    2. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    3. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    4. Alvarez-Martínez, R. & Cocho, G. & Rodríguez, R.F. & Martínez-Mekler, G., 2014. "Birth and death master equation for the evolution of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 198-208.
    5. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Lu Pang & Cheng Hu & Juan Yu & Haijun Jiang, 2022. "Fixed-Time Synchronization for Fuzzy-Based Impulsive Complex Networks," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
    8. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    9. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    10. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    11. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    12. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    13. Enrico Maria Carlini & Alfonso De Cesare & Corrado Gadaleta & Chiara Giordano & Michela Migliori & Giuseppe Forte, 2022. "Assessment of Renewable Acceptance by Electric Network Development Exploiting Operation Islands," Energies, MDPI, vol. 15(15), pages 1-19, July.
    14. Ghafory-Ashtiany, Mohsen & Arghavani, Mahban, 2022. "Physical performance of power grids against earthquakes: from framework to implementation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    15. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    16. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    17. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    18. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    20. Arunkumar, T. & Lim, Hyeong Woo & Denkenberger, David & Lee, Sang Joon, 2022. "A review on carbonized natural green flora for solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:372-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.