IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i12p1691-1712.html
   My bibliography  Save this article

Adaptive directional stratification for controlled estimation of the probability of a rare event

Author

Listed:
  • Munoz Zuniga, M.
  • Garnier, J.
  • Remy, E.
  • de Rocquigny, E.

Abstract

Within the structural reliability context, the aim of this paper is to present a new accelerated Monte-Carlo simulation method, named ADS, Adaptive Directional Stratification, and designed to overcome the following industrial constraints: robustness of the estimation of a low structural failure probability (less than 10−3), limited computational resources and complex (albeit often monotonic) physical model. This new stochastic technique is an original variant of adaptive accelerated simulation method, combining stratified sampling and directional simulation and including two steps in the adaptation stage (ADS-2). First, we theoretically study the properties of two possible failure probability estimators and get the asymptotic and non-asymptotic expressions of their variances. Then, we propose some improvements for our new method. To begin with, we focus on the root-finding algorithm required for the directional approach: we present a stop criterion for the dichotomic method and a strategy to reduce the required number of calls to the costly physical model under monotonic hypothesis. Lastly, to overcome the limit involved by the increase of the input dimension, we introduce the ADS-2+ method which has the same ground as the ADS-2 method, but additionally uses a statistical test to detect the most significant inputs and carries out the stratification only along them. To conclude, we test the ADS-2 and ADS-2+ methods on academic examples in order to compare them with the classical structural reliability methods and to make a numerical sensitivity analysis over some parameters. We also apply the methods to a flood model and a nuclear reactor pressurized vessel model, to practically demonstrate their interest on real industrial examples.

Suggested Citation

  • Munoz Zuniga, M. & Garnier, J. & Remy, E. & de Rocquigny, E., 2011. "Adaptive directional stratification for controlled estimation of the probability of a rare event," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1691-1712.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1691-1712
    DOI: 10.1016/j.ress.2011.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Charles, 2006. "Refinement strategies for stratified sampling methods," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1257-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    2. Vergé, Christelle & Morio, Jérôme & Moral, Pierre Del, 2016. "An island particle algorithm for rare event analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 63-75.
    3. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    4. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    2. Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
    3. Tong, Charles, 2010. "Self-validated variance-based methods for sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 301-309.
    4. Olympia Roeva & Gergana Roeva & Elena Chorukova, 2024. "Crow Search Algorithm for Modelling an Anaerobic Digestion Process: Algorithm Parameter Influence," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
    5. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    6. Sallaberry, C.J. & Helton, J.C. & Hora, S.C., 2008. "Extension of Latin hypercube samples with correlated variables," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1047-1059.
    7. Qing Deng & Changsen Feng & Fushuan Wen & Chung-Li Tseng & Lei Wang & Bo Zou & Xizhu Zhang, 2019. "Evaluation of Accommodation Capability for Electric Vehicles of a Distribution System Considering Coordinated Charging Strategies," Energies, MDPI, vol. 12(16), pages 1-20, August.
    8. A. M. Elsawah & Kai-Tai Fang, 2020. "New foundations for designing U-optimal follow-up experiments with flexible levels," Statistical Papers, Springer, vol. 61(2), pages 823-849, April.
    9. Sui Peng & Huixiang Chen & Yong Lin & Tong Shu & Xingyu Lin & Junjie Tang & Wenyuan Li & Weijie Wu, 2019. "Probabilistic Power Flow for Hybrid AC/DC Grids with Ninth-Order Polynomial Normal Transformation and Inherited Latin Hypercube Sampling," Energies, MDPI, vol. 12(16), pages 1-21, August.
    10. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1691-1712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.