IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p456-462.html
   My bibliography  Save this article

Operational reliability assessment of an aircraft environmental control system

Author

Listed:
  • Jenab, K.
  • Rashidi, K.

Abstract

The aircraft environmental control system (ECS) is composed of several non-identical and non-dedicated subsystems working as warm–cold standby subsystems. Also, their state transition times are arbitrary distributed. This paper presents a flow-graph-based method to calculate time-to-failure data and failure probability of the ECS. The obtained data from the model may be used for maintenance optimization that employs the failure limit strategy for ECS. The model incorporates detectable failures such as hardware failures, critical human errors, common-cause failures, maintenance categories, and switch activation methods. A numerical example is also presented to demonstrate the application of the model.

Suggested Citation

  • Jenab, K. & Rashidi, K., 2009. "Operational reliability assessment of an aircraft environmental control system," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 456-462.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:456-462
    DOI: 10.1016/j.ress.2008.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tieling & Xie, Min & Horigome, Michio, 2006. "Availability and reliability of k-out-of-(M+N):G warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 381-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    3. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    4. Heping Jia & Rui Peng & Yi Ding & Yonghua Song, 2019. "Reliability of demand-based warm standby system with common bus performance sharing," Journal of Risk and Reliability, , vol. 233(4), pages 580-592, August.
    5. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V., 2012. "A fast approximation method for reliability analysis of cold-standby systems," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 119-126.
    6. Yuan, Li & Xu, Jian, 2011. "An optimal replacement policy for a repairable system based on its repairman having vacations," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 868-875.
    7. Huang, Wei & Loman, James & Song, Thomas, 2015. "A reliability model of a warm standby configuration with two identical sets of units," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 237-245.
    8. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2021. "Optimization of cyclic preventive replacement in homogeneous warm-standby system with reusable elements exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    11. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
    12. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Co-optimizing component allocation and activation sequence in heterogeneous 1-out-of-n standby system exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Guo, Linhan & Li, Ruiyang & Wang, Yu & Yang, Jun & Liu, Yu & Chen, Yiming & Zhang, Jianguo, 2023. "Availability for multi-component k-out-of-n: G warm-standby system in series with shut-off rule of suspended animation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Khatab, A. & Nahas, N. & Nourelfath, M., 2009. "Availability of K-out-of-N:G systems with non-identical components subject to repair priorities," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 142-151.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Shekhar, Chandra & Kumar, Amit & Varshney, Shreekant, 2020. "Load sharing redundant repairable systems with switching and reboot delay," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Optimal work distribution and backup frequency for two non-identical work sharing elements," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 127-136.
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Standby mode transfer schedule minimizing downtime of 1-out-of-N system with storage," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:456-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.