A weighted time embedding transformer network for remaining useful life prediction of rolling bearing
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2024.110399
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yu Mo & Qianhui Wu & Xiu Li & Biqing Huang, 2021. "Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1997-2006, October.
- Si, Xiao-Sheng & Li, Tianmei & Zhang, Jianxun & Lei, Yaguo, 2022. "Nonlinear degradation modeling and prognostics: A Box-Cox transformation perspective," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Chen, Dingliang & Cai, Wei & Yu, Hangjun & Wu, Fei & Qin, Yi, 2023. "A novel transfer gear life prediction method by the cross-condition health indicator and nested hierarchical binary-valued network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Li, Yuan & Li, Jingwei & Wang, Huanjie & Liu, Chengbao & Tan, Jie, 2024. "Knowledge enhanced ensemble method for remaining useful life prediction under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zhan, Yuling & Kong, Ziqian & Wang, Ziqi & Jin, Xiaohang & Xu, Zhengguo, 2024. "Remaining useful life prediction with uncertainty quantification based on multi-distribution fusion structure," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Kim, Sunghyun & Seo, Yun-Ho & Park, Junhong, 2024. "Transformer-based novel framework for remaining useful life prediction of lubricant in operational rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
- Yang, Zaoli & Shang, Wen-Long & Zhang, Haoran & Garg, Harish & Han, Chunjia, 2022. "Assessing the green distribution transformer manufacturing process using a cloud-based q-rung orthopair fuzzy multi-criteria framework," Applied Energy, Elsevier, vol. 311(C).
- Jing Wang & Shubin Lyu & C. L. Philip Chen & Huimin Zhao & Zhengchun Lin & Pingsheng Quan, 2023. "SPRBF-ABLS: a novel attention-based broad learning systems with sparse polynomial-based radial basis function neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1779-1794, April.
- Xu, Xiaobin & Zhou, Jiahao & Weng, Xu & Zhang, Zehui & He, Hong & Steyskal, Felix & Brunauer, Georg, 2024. "A novel evidence reasoning-based RUL prediction method integrating uncertainty information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
More about this item
Keywords
Remaining useful life prediction; Deep learning; Transformer; Weighted time embedding;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400471x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.