IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v117y2024ics0966692324001005.html
   My bibliography  Save this article

Study on cascading failure vulnerability of the 21st-century Maritime Silk Road container shipping network

Author

Listed:
  • Liupeng, Jiang
  • Guangsheng, Wang
  • Xuejun, Feng
  • Tong, Yu
  • Zhiyi, Lei

Abstract

The 21st-century Maritime Silk Road container shipping network (MSRCSN) is pivotal for global economic and social progress, yet it exhibits vulnerabilities impacting the stability of maritime transportation and international trade. This study conducts a comprehensive analysis of the MSRCSN's network topology, demonstrating its insignificant small-world and scale-free properties. We introduce an enhanced cascading failure model grounded in a nonlinear capacity framework, enabling the examination of maritime shipping networks' vulnerability to cascading failures, predicated solely on routes connectivity and empirical port load data. Applying this model to the MSRCSN, our findings corroborate a pronounced increase in dynamic vulnerability due to cascading failures, compared to static vulnerability. The network's static structure is exceedingly susceptible to disruptions at ports with high connectivity, whereas in the context of cascading failures, the greatest vulnerability lies in ports with substantial load. Efforts to augment port capacity yield marginal benefits in mitigating dynamic vulnerability. We propose the novel concept of network capacity investment cost, revealing that prioritizing capacity redundancy for lower-load ports can optimize overall investment efficiency in network capacity. These insights offer strategic guidance for enhancing the resilience of the MSRCSN against vulnerabilities.

Suggested Citation

  • Liupeng, Jiang & Guangsheng, Wang & Xuejun, Feng & Tong, Yu & Zhiyi, Lei, 2024. "Study on cascading failure vulnerability of the 21st-century Maritime Silk Road container shipping network," Journal of Transport Geography, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:jotrge:v:117:y:2024:i:c:s0966692324001005
    DOI: 10.1016/j.jtrangeo.2024.103891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692324001005
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    2. Chen, Wei & Jiang, Manrui & Jiang, Cheng & Zhang, Jun, 2020. "Critical node detection problem for complex network in undirected weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    5. Naixia Mou & Caixia Liu & Lingxian Zhang & Xin Fu & Yichun Xie & Yong Li & Peng Peng, 2018. "Spatial Pattern and Regional Relevance Analysis of the Maritime Silk Road Shipping Network," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    6. Ducruet, César, 2017. "Multilayer dynamics of complex spatial networks: The case of global maritime flows (1977–2008)," Journal of Transport Geography, Elsevier, vol. 60(C), pages 47-58.
    7. César Ducruet, 2020. "The geography of maritime networks : a critical review," Post-Print hal-03246890, HAL.
    8. César Ducruet, 2017. "Multilayer dynamics of complex spatial networks : the case of global maritime flows (1977-2008)," Post-Print hal-03246925, HAL.
    9. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    10. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    11. Duan, Dong-Li & Ling, Xiao-Dong & Wu, Xiao-Yue & OuYang, Di-Hua & Zhong, Bin, 2014. "Critical thresholds for scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 252-258.
    12. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    13. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    15. Di Wu & Nuo Wang & Anqi Yu & Nuan Wu, 2019. "Vulnerability analysis of global container shipping liner network based on main channel disruption," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(4), pages 394-409, May.
    16. Xu Li & Bin Lv & Binke Lang & Qixiang Chen, 2022. "Exploring the Cascading Failure in Taxi Transportation Networks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    2. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    3. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
    4. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    5. Zhongyun Yue & John Mangan, 2024. "A framework for understanding reliability in container shipping networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 523-544, September.
    6. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    8. Oliveira, Gabriel Figueiredo de & Schaffar, Alexandra & Cariou, Pierre & Monios, Jason, 2021. "Convergence and growth traps in container ports," Transport Policy, Elsevier, vol. 110(C), pages 170-180.
    9. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    10. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    11. Yu, Ping & Wang, Zhiping & Wang, Peiwen & Yin, Haofei & Wang, Jia, 2022. "Dynamic evolution of shipping network based on hypergraph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Xu, Yang & Peng, Peng & Claramunt, Christophe & Lu, Feng & Yan, Ran, 2024. "Cascading failure modelling in global container shipping network using mass vessel trajectory data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    15. Pisit Jarumaneeroj & Jorge Barnett Lawton & Morten Svindland, 2024. "An evolution of the Global Container Shipping Network: port connectivity and trading community structure (2011–2017)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 283-306, June.
    16. Pisit Jarumaneeroj & Amar Ramudhin & Jorge Barnett Lawton, 2023. "A connectivity-based approach to evaluating port importance in the global container shipping network," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 602-622, September.
    17. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Kerbiriou, Ronan & Serry, Arnaud, 2023. "Estimation and analysis of container handling rates in European ports," Journal of Transport Geography, Elsevier, vol. 108(C).
    19. César Ducruet & Hidekazu Itoh, 2022. "Spatial Network Analysis of Container Port Operations: The Case of Ship Turnaround Times," Networks and Spatial Economics, Springer, vol. 22(4), pages 883-902, December.
    20. Gabrielle Gambuli, 2023. "Navigating the Geography of Regional Disparities: Market Access and the Core-Periphery Divide," THEMA Working Papers 2023-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:117:y:2024:i:c:s0966692324001005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.