IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001248.html
   My bibliography  Save this article

A stochastic optimization framework to planing for geographically correlated failures in coupled natural gas and electric power systems

Author

Listed:
  • Su, Wenjing
  • Blumsack, Seth
  • Webster, Mort

Abstract

We develop a transmission planning framework for coupled natural gas and electric power systems facing geographically correlated failures. The framework uses a stochastic optimization method incorporating uncertainty in the locations of the geographically correlated failures. We compare the proposed planning framework with the traditional N-k method which plans for geographically uncorrelated failures in terms of improving resilience effectively against geographically correlated failures. The proposed planning framework is illustrated using a small test system, but is scalable to larger system sizes and portable to other coupled-infrastructure contexts. We illustrate how planning for geographically correlated failures can enhance system-wide robustness by reinforcing the network connectivity between supply and demand locations instead of addressing local vulnerability at specific locations when planning for geographically uncorrelated failures. Planning for geographically correlated failures improves system resilience to both geographically correlated and uncorrelated failures significantly, but the converse is not true in our case study.

Suggested Citation

  • Su, Wenjing & Blumsack, Seth & Webster, Mort, 2024. "A stochastic optimization framework to planing for geographically correlated failures in coupled natural gas and electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001248
    DOI: 10.1016/j.ress.2024.110049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Tao & Yao, Li & Li, Fangxing, 2018. "A multi-uncertainty-set based two-stage robust optimization to defender–attacker–defender model for power system protection," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 179-186.
    2. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    3. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.
    5. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    7. Hughes, William & Zhang, Wei & Bagtzoglou, Amvrossios C. & Wanik, David & Pensado, Osvaldo & Yuan, Hao & Zhang, Jintao, 2021. "Damage modeling framework for resilience hardening strategy for overhead power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Toroghi, Shahaboddin Sean H. & Thomas, Valerie M., 2020. "A framework for the resilience analysis of electric infrastructure systems including temporary generation systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasanzad, Fardin & Rastegar, Hasan, 2022. "Application of optimal hardening for improving resilience of integrated power and natural gas system in case of earthquake," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Omid Sadeghian & Behnam Mohammadi-Ivatloo & Fazel Mohammadi & Zulkurnain Abdul-Malek, 2022. "Protecting Power Transmission Systems against Intelligent Physical Attacks: A Critical Systematic Review," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Peng Jiang & Shengjun Huang & Tao Zhang, 2019. "Optimal Deception Strategies in Power System Fortification against Deliberate Attacks," Energies, MDPI, vol. 12(3), pages 1-20, January.
    6. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    7. Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Feng, Qilin & Chen, Yicun & Tang, Haizhou, 2021. "Defender–attacker–operator: Tri-level game-theoretic interdiction analysis of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Tian, Meng & Dong, Zhengcheng & Gong, Li & Wang, Xianpei, 2024. "Line hardening strategies for resilient power systems considering cyber-topology interdependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    12. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Paul, Shuva & Poudyal, Abodh & Poudel, Shiva & Dubey, Anamika & Wang, Zhaoyu, 2024. "Resilience assessment and planning in power distribution systems: Past and future considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Chen Wang & Chao Zhang & Ling Luo & Xiaoman Qi & Jingjing Kong, 2024. "Optimal Resilience and Risk-Driven Strategies for Pre-Disaster Protection of Electric Power Systems against Uncertain Disaster Scenarios," Energies, MDPI, vol. 17(15), pages 1-24, July.
    15. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    16. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimization of time constrained N-version programming service components with competing task execution and version corruption processes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.