IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001248.html
   My bibliography  Save this article

A stochastic optimization framework to planing for geographically correlated failures in coupled natural gas and electric power systems

Author

Listed:
  • Su, Wenjing
  • Blumsack, Seth
  • Webster, Mort

Abstract

We develop a transmission planning framework for coupled natural gas and electric power systems facing geographically correlated failures. The framework uses a stochastic optimization method incorporating uncertainty in the locations of the geographically correlated failures. We compare the proposed planning framework with the traditional N-k method which plans for geographically uncorrelated failures in terms of improving resilience effectively against geographically correlated failures. The proposed planning framework is illustrated using a small test system, but is scalable to larger system sizes and portable to other coupled-infrastructure contexts. We illustrate how planning for geographically correlated failures can enhance system-wide robustness by reinforcing the network connectivity between supply and demand locations instead of addressing local vulnerability at specific locations when planning for geographically uncorrelated failures. Planning for geographically correlated failures improves system resilience to both geographically correlated and uncorrelated failures significantly, but the converse is not true in our case study.

Suggested Citation

  • Su, Wenjing & Blumsack, Seth & Webster, Mort, 2024. "A stochastic optimization framework to planing for geographically correlated failures in coupled natural gas and electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001248
    DOI: 10.1016/j.ress.2024.110049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.