IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007664.html
   My bibliography  Save this article

Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network

Author

Listed:
  • Wang, Haijie
  • Li, Bo
  • Lei, Liming
  • Xuan, Fuzhen

Abstract

Microstructural inhomogeneity in additively manufactured (AM) components leads to uncertainty in their fatigue performance. While purely data-driven methods can only provide deterministic outcomes and lack physical interpretability. Furthermore, considering the dispersion of fatigue life, a probabilistic neural network framework integrating physical information, namely a physics-informed probabilistic neural network (PIPNN), is proposed for predicting the fatigue life of AM parts. The framework describes the dispersion of fatigue life in the parametric form of probability statistics. It incorporates physical laws and models to constrain neurons and loss function, enabling the network to learn deeper physical laws that align with the fatigue process, thus enhancing the interpretability and prediction reliability of the model. Fatigue experiments were performed on Hastelloy X superalloy specimens fabricated using laser powder bed fusion, serving as the basis for validating and comparing the PIPNN model with a probabilistic neural network. The results indicate that PIPNN adeptly captures the heteroskedasticity of fatigue life and exhibits superior prediction accuracy and more reliable prediction performance in fatigue-life prediction. PIPNN offers a physically consistent method for fatigue-life prediction considering probabilistic statistics.

Suggested Citation

  • Wang, Haijie & Li, Bo & Lei, Liming & Xuan, Fuzhen, 2024. "Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007664
    DOI: 10.1016/j.ress.2023.109852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Run-Zi & Gu, Hang-Hang & Liu, Yu & Miura, Hideo & Zhang, Xian-Cheng & Tu, Shan-Tung, 2023. "Surrogate-modeling-assisted creep-fatigue reliability assessment in a low-pressure turbine disc considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    2. Mendoza, Jorge & Bismut, Elizabeth & Straub, Daniel & Köhler, Jochen, 2022. "Optimal life-cycle mitigation of fatigue failure risk for structural systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Li, Yongjie & Liu, Zheng & He, Zhenfeng & Tu, Liang & Huang, Hong-Zhong, 2023. "Fatigue reliability analysis and assessment of offshore wind turbine blade adhesive bonding under the coupling effects of multiple environmental stresses," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    4. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Arun Poudel & Mohammad Salman Yasin & Jiafeng Ye & Jia Liu & Aleksandr Vinel & Shuai Shao & Nima Shamsaei, 2022. "Feature-based volumetric defect classification in metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Minglei Qu & Qilin Guo & Luis I. Escano & Ali Nabaa & S. Mohammad H. Hojjatzadeh & Zachary A. Young & Lianyi Chen, 2022. "Publisher Correction: Controlling process instability for defect lean metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    7. Liu, Xintian & Yu, Xueguang & Tong, Jiachi & Wang, Xu & Wang, Xiaolan, 2021. "Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Chu Lun Alex Leung & Sebastian Marussi & Robert C. Atwood & Michael Towrie & Philip J. Withers & Peter D. Lee, 2018. "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    9. Minglei Qu & Qilin Guo & Luis I. Escano & Ali Nabaa & S. Mohammad H. Hojjatzadeh & Zachary A. Young & Lianyi Chen, 2022. "Controlling process instability for defect lean metal additive manufacturing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Kai Zhang & Yunhui Chen & Sebastian Marussi & Xianqiang Fan & Maureen Fitzpatrick & Shishira Bhagavath & Marta Majkut & Bratislav Lukic & Kudakwashe Jakata & Alexander Rack & Martyn A. Jones & Junji S, 2024. "Pore evolution mechanisms during directed energy deposition additive manufacturing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Dongsheng Zhang & Wei Liu & Yuxiao Li & Darui Sun & Yu Wu & Shengnian Luo & Sen Chen & Ye Tao & Bingbing Zhang, 2023. "In situ observation of crystal rotation in Ni-based superalloy during additive manufacturing process," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Zhao, Zilong & Lv, Guoquan & Xu, Yanwen & Lin, Yu-Feng & Wang, Pingfeng & Wang, Xinlei, 2024. "Enhancing ground source heat pump system design optimization: A stochastic model incorporating transient geological factors and decision variables," Renewable Energy, Elsevier, vol. 225(C).
    7. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Wang, Yifei & Xie, Mingjiang & Su, Chun, 2024. "Multi-objective maintenance strategy for corroded pipelines considering the correlation of different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Pan, Yue & Qin, Jianjun & Hou, Yongmao & Chen, Jin-Jian, 2024. "Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Pei, Liang & Chen, Chen & He, Kun & Lu, Xiang, 2022. "System reliability of a gravity dam-foundation system using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    16. Lee, Dooyoul & Kwon, Kybeom, 2023. "Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.