IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003367.html
   My bibliography  Save this article

Sensitivity analysis of system reliability using the complex-step derivative approximation

Author

Listed:
  • Chun, Junho

Abstract

Sensitivity analysis of system failure probability is performed to evaluate the dependence of system reliability on design parameters or component events. Sensitivity analysis is integral for the implementation of efficient gradient-based optimization algorithms in system reliability-based design optimization, and for risk-informed decision-making. This paper presents a method for sensitivity analysis of system failure probability using complex-step differentiation. Many derivative approximations use a small step size to minimize subtractive cancellation errors. The complex-step approximation utilizes an imaginary number, such that the subtractive cancellation is not included in the formulation, resulting in calculations without the associated round-off error. The level of accuracy in sensitivity analysis using the finite difference method (FDM) can vary with change in the step size, which is generally selected arbitrarily, as the actual effect of the step size on the result itself is difficult to predict prior to actual calculation. The complex-step approximation, however, is not confined by the step size, as subtraction cancellation is not included. Compared to the FDM, the complex step approximation has only one limit, the numerical precision of evaluating the function. The proposed method integrates complex-step differentiation into a numerical integration scheme, for the assessment of system reliability and sensitivity. System failure probability and sensitivity are obtained by taking the real and imaginary part of the cumulative distribution function, which is numerically evaluated using the proposed method. The computational efficiency for system reliability problems involving high dimensionality is improved with the utilization of a dimension reduction technique. Numerical examples of sensitivity analysis for series, parallel, and general systems are presented to illustrate the performance of the proposed method.

Suggested Citation

  • Chun, Junho, 2021. "Sensitivity analysis of system reliability using the complex-step derivative approximation," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003367
    DOI: 10.1016/j.ress.2021.107814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Gardoni, 2017. "Risk and Reliability Analysis," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 3-24, Springer.
    2. Kang, Won-Hee & Song, Junho & Gardoni, Paolo, 2008. "Matrix-based system reliability method and applications to bridge networks," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1584-1593.
    3. Song, Shufang & Lu, Zhenzhou & Qiao, Hongwei, 2009. "Subset simulation for structural reliability sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 658-665.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    2. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    3. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    4. Guidotti, Roberto & Gardoni, Paolo & Rosenheim, Nathanael, 2019. "Integration of physical infrastructure and social systems in communities’ reliability and resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 476-492.
    5. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    6. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    9. Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Sungsik Yoon & Young-Joo Lee & Hyung-Jo Jung, 2021. "Flow-based seismic risk assessment of a water transmission network employing probabilistic seismic hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1231-1254, January.
    11. Kim, Youngsuk & Kang, Won-Hee, 2013. "Network reliability analysis of complex systems using a non-simulation-based method," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 80-88.
    12. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
    16. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    17. Roberto Benato & Antonio Chiarelli & Sebastian Dambone Sessa, 2021. "Reliability Assessment of a Multi-State HVDC System by Combining Markov and Matrix-Based Methods," Energies, MDPI, vol. 14(11), pages 1-13, May.
    18. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    19. Ling, Chunyan & Lu, Zhenzhou & Zhu, Xianming, 2019. "Efficient methods by active learning Kriging coupled with variance reduction based sampling methods for time-dependent failure probability," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 23-35.
    20. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.