IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v211y2021ics0951832021001587.html
   My bibliography  Save this article

Identification of Risk-Significant Components in Nuclear Power Plants to Reduce Cs-137 Radioactive Risk

Author

Listed:
  • Cho, Jaehyun
  • Han, Sang Hoon

Abstract

The amount and frequency of Cs-137 release in a nuclear accident are regulated to enhance environmental radiation protection. While significant improvements have been accomplished, including the preparation of severe accident mitigation equipment and systems to satisfy Cs-137 regulations, no attempt has yet been made along these lines to manage the structures, systems and components (SSCs) in nuclear power plants. Therefore, this paper proposes a new approach to identify the significant SSCs by quantifying related risk importance measures using release frequency and Cs-137 radioactivity. The new approach includes a Level 1 and Level 2 probabilistic safety assessment (PSA) linked model to obtain the frequency and Cs-137 radioactivity in all accident scenarios. The developed approach was applied to an OPR-1000 full-power internal events PSA model, and as a result, the top 20 SSCs were identified based on Fussell–Vesely importance, risk reduction worth, and risk achievement worth measures. The new approach can support risk-informed management for not only Cs-137 regulations but also public risk by using early and latent cancer fatalities.

Suggested Citation

  • Cho, Jaehyun & Han, Sang Hoon, 2021. "Identification of Risk-Significant Components in Nuclear Power Plants to Reduce Cs-137 Radioactive Risk," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001587
    DOI: 10.1016/j.ress.2021.107613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    2. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2017. "Portfolio optimization of safety measures for reducing risks in nuclear systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 20-29.
    3. Silva, Kampanart & Okamoto, Koji, 2018. "Discussion on probability of cesium-137 release exceeding 100 TBq as a part of the consideration of nuclear power plant probabilistic risk criteria for environmental protection," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 88-93.
    4. Kim, Jaewhan & Cho, Jaehyun, 2020. "Technical challenges in modeling human and organizational actions under severe accident conditions for Level 2 PSA," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Hong Xu & Baorui Zhang, 2022. "Diverse and Flexible Coping Strategy for Nuclear Safety: Opportunities and Challenges," Energies, MDPI, vol. 15(17), pages 1-21, August.
    3. Cho, Jaehyun & Lee, Sang Hun & Kim, Jaewhan & Park, Seong Kyu, 2022. "Framework to model severe accident management guidelines into Level 2 probabilistic safety assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    5. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    7. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    9. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    10. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    11. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    12. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    13. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    14. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.
    15. Yacov Y. Haimes, 2006. "On the Definition of Vulnerabilities in Measuring Risks to Infrastructures," Risk Analysis, John Wiley & Sons, vol. 26(2), pages 293-296, April.
    16. Angelo Panno & Annalisa Theodorou & Giuseppe Alessio Carbone & Evelina De Longis & Chiara Massullo & Gianluca Cepale & Giuseppe Carrus & Claudio Imperatori & Giovanni Sanesi, 2021. "Go Greener, Less Risk: Access to Nature Is Associated with Lower Risk Taking in Different Domains during the COVID-19 Lockdown," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    17. Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
    18. Denitsa Angelova & Andrea Bigano & Francesco Bosello & Shouro Dasgupta & Silvio Giove, 2023. "Assessing systemic climate change risk by country. Reflections from the use of composite indicators," Working Papers 2023: 28, Department of Economics, University of Venice "Ca' Foscari".
    19. Agnieszka A. Tubis & Emilia T. Skupień & Stefan Jankowski & Jacek Ryczyński, 2022. "Risk Assessment of Human Factors of Logistic Handling of Deliveries at an LNG Terminal," Energies, MDPI, vol. 15(8), pages 1-24, April.
    20. Ioanna Ioannou & Jaime E. Cadena & Willy Aspinall & David Lange & Daniel Honfi & Tiziana Rossetto, 2022. "Prioritization of hazards for risk and resilience management through elicitation of expert judgement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2773-2795, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021001587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.