IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3701-d775443.html
   My bibliography  Save this article

Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges

Author

Listed:
  • Peng Ye

    (Urban Planning and Development Institute, Yangzhou University, Yangzhou 225127, China
    College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

Meteorological disaster monitoring is an important research direction in remote sensing technology in the field of meteorology, which can serve many meteorological disaster management tasks. The key issues in the remote sensing monitoring of meteorological disasters are monitoring task arrangement and organization, meteorological disaster information extraction, and multi-temporal disaster information change detection. To accurately represent the monitoring tasks, it is necessary to determine the timescale, perform sensor planning, and construct a representation model to monitor information. On this basis, the meteorological disaster information is extracted by remote sensing data-processing approaches. Furthermore, the multi-temporal meteorological disaster information is compared to detect the evolution of meteorological disasters. Due to the highly dynamic nature of meteorological disasters, the process characteristics of meteorological disasters monitoring have attracted more attention. Although many remote sensing approaches were successfully used for meteorological disaster monitoring, there are still gaps in process monitoring. In future, research on sensor planning, information representation models, multi-source data fusion, etc., will provide an important basis and direction to promote meteorological disaster process monitoring. The process monitoring strategy will further promote the discovery of correlations and impact mechanisms in the evolution of meteorological disasters.

Suggested Citation

  • Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3701-:d:775443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lifen Xu & Xiangwei Meng & Xuegong Xu, 2014. "Natural hazard chain research in China: A review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1631-1659, January.
    2. Shaobo Zhong & Zhixiang Fang & Min Zhu & Quanyi Huang, 2017. "A geo-ontology-based approach to decision-making in emergency management of meteorological disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 531-554, November.
    3. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    4. Peng Ye & Xueying Zhang & Ge Shi & Shuhui Chen & Zhiwen Huang & Wei Tang, 2020. "TKRM: A Formal Knowledge Representation Method for Typhoon Events," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    5. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    6. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    7. Zheng Zhong & Ningsheng Chen & Guisheng Hu & Zheng Han & Huayong Ni, 2021. "Aggravation of debris flow disaster by extreme climate and engineering: a case study of the Tongzilin Gully, Southwestern Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 237-253, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dapeng Zhang & Yunsheng Ma & Huiling Zhang & Yi Zhang, 2024. "Marine Equipment Siting Using Machine-Learning-Based Ocean Remote Sensing Data: Current Status and Future Prospects," Sustainability, MDPI, vol. 16(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    2. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    3. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    4. Jian Ma & Anirudh Rao & Vitor Silva & Kai Liu & Ming Wang, 2021. "A township-level exposure model of residential buildings for mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 389-423, August.
    5. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    6. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    7. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    8. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    10. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    11. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    13. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    14. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    15. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    16. Naomi Aoki, 2018. "Who Would Be Willing to Accept Disaster Debris in Their Backyard? Investigating the Determinants of Public Attitudes in Post‐Fukushima Japan," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 535-547, March.
    17. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    18. Matthew H. Henry & Yacov Y. Haimes, 2009. "A Comprehensive Network Security Risk Model for Process Control Networks," Risk Analysis, John Wiley & Sons, vol. 29(2), pages 223-248, February.
    19. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    20. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3701-:d:775443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.