IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v204y2020ics0951832020306505.html
   My bibliography  Save this article

The role of augmented reality in air accident investigation and practitioner training

Author

Listed:
  • D'Anniballe, A.
  • Silva, J.
  • Marzocca, P.
  • Ceruti, A.

Abstract

The aim of this paper is to describe the application of digital visualization tools to assist air accident investigators, including both their investigation activities and as a training resource. Augmented Reality technology is used to re-create a real aircraft crash scene, both in terms of wreckage distribution and features of the surroundings, in a full-scale 3D representation. A case study shows both potentials and limitations of the approach, and recommendations on how to improve the methodology are also proposed. Overall, it is concluded that Augmented Reality has achieved a maturity stage sufficient to consider it as an effective tool for training of air accident investigators and, to some extent, to support the investigation process itself, although more developments are required to address some current limitations and fully exploit the capabilities of this technology.

Suggested Citation

  • D'Anniballe, A. & Silva, J. & Marzocca, P. & Ceruti, A., 2020. "The role of augmented reality in air accident investigation and practitioner training," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020306505
    DOI: 10.1016/j.ress.2020.107149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020306505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    2. Favarò, Francesca M. & Jackson, David W. & Saleh, Joseph H. & Mavris, Dimitri N., 2013. "Software contributions to aircraft adverse events: Case studies and analyses of recurrent accident patterns and failure mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 131-142.
    3. Rios Insua, D. & Alfaro, C. & Gomez, J. & Hernandez-Coronado, P. & Bernal, F., 2018. "A framework for risk management decisions in aviation safety at state level," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 74-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Favarò, Francesca M. & Saleh, Joseph H., 2018. "Application of temporal logic for safety supervisory control and model-based hazard monitoring," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 166-178.
    2. Ewa DUDEK & Karolina KRZYKOWSKA-PIOTROWSKA & Mirosław SIERGIEJCZYK, 2020. "Risk Management In (Air) Transport With Exemplary Risk Analysis Based On The Tolerability Matrix," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(2), pages 143-156, June.
    3. Mohammadnazar, Hojat & Pulkkinen, Mirja & Ghanbari, Hadi, 2019. "A root cause analysis method for preventing erratic behavior in software development: PEBA," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Favarò, Francesca M. & Saleh, Joseph H., 2016. "Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 316-330.
    5. Foreman, Veronica L. & Favaró, Francesca M. & Saleh, Joseph H. & Johnson, Christopher W., 2015. "Software in military aviation and drone mishaps: Analysis and recommendations for the investigation process," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 101-111.
    6. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    7. Verónica Elvira & Francisco Bernal & Pablo Hernandez-Coronado & Esperanza Herraiz & Cesar Alfaro & Javier Gomez & David Rios Insua, 2020. "Safer Skies over Spain," Interfaces, INFORMS, vol. 50(1), pages 21-36, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020306505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.