IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v201y2020ics0951832019312049.html
   My bibliography  Save this article

Optimal resource allocation for defending k-out-of-n systems against sequential intentional and unintentional impacts

Author

Listed:
  • Xiao, Hui
  • Lin, Chen
  • Kou, Gang
  • Peng, Rui

Abstract

Existing literature on system defense mainly considers single or multiple intentional impacts. However, intentional impacts (strategic attacks) and unintentional impacts (natural disasters) can happen sequentially in practice. To overcome this limitation, we conduct a study that considers the optimal resource allocation for defending a k-out-of-n system against sequential intentional and unintentional impacts, which is motivated by the defense of a solar power grid system against the sequential hacker's attack and solar storm. We study the optimal defense strategies under different occurrence orders of intentional and unintentional impacts and analyze the impact of critical parameters on the defender's optimal defense strategy by a case study. We also investigate the scenario in which the defender offers supplemental protection to the elements that survive the first impact. The case study indicates that deploying as many elements as possible in the first stage may not be the optimal strategy for the defender no matter the unintentional impact comes first or the intentional impact comes first. Providing supplemental protection can reduce the expected loss of the system when the unintentional impact comes first.

Suggested Citation

  • Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2020. "Optimal resource allocation for defending k-out-of-n systems against sequential intentional and unintentional impacts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019312049
    DOI: 10.1016/j.ress.2020.106952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019312049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    2. Xing, Liudong & Levitin, Gregory, 2017. "Balancing theft and corruption threats by data partition in cloud system with independent server protection," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 248-254.
    3. Liu, Yu & Chen, Yiming & Jiang, Tao, 2018. "On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations," European Journal of Operational Research, Elsevier, vol. 268(1), pages 113-127.
    4. Hausken, Kjell, 2008. "Strategic defense and attack for series and parallel reliability systems," European Journal of Operational Research, Elsevier, vol. 186(2), pages 856-881, April.
    5. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    6. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    7. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    8. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    9. Levitin, Gregory & Hausken, Kjell, 2011. "Preventive strike vs. false targets and protection in defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 912-924.
    10. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    11. Gregory Levitin & Kjell Hausken, 2013. "Parallel systems under two sequential attacks with contest intensity variation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 207-224, January.
    12. Wu, Di & Xiao, Hui & Peng, Rui, 2018. "Object defense with preventive strike and false targets," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 76-80.
    13. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.
    14. Wu, Di & Yan, Xiangbin & Peng, Rui & Wu, Shaomin, 2020. "Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    15. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    16. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    17. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    18. Hu, Xiaoxiao & Xu, Maochao & Xu, Shouhuai & Zhao, Peng, 2017. "Multiple cyber attacks against a target with observation errors and dependent outcomes: Characterization and optimization," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 119-133.
    19. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    20. Hausken, Kjell, 2019. "Governmental combat of the dynamics of multiple competing terrorist organizations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 33-55.
    21. Levitin, Gregory & Hausken, Kjell, 2009. "Parallel systems under two sequential attacks," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 763-772.
    22. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    23. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2013. "Individual vs. overarching protection for minimizing the expected damage caused by an attack," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 117-125.
    24. G Levitin & K Hausken, 2012. "Parallel systems under two sequential attacks with imperfect detection of the first attack outcome," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1545-1555, November.
    25. G Levitin & K Hausken, 2012. "Individual versus overarching protection against strategic attacks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 969-981, July.
    26. Haphuriwat, N. & Bier, V.M., 2011. "Trade-offs between target hardening and overarching protection," European Journal of Operational Research, Elsevier, vol. 213(1), pages 320-328, August.
    27. Rui Peng & Min Xie & Szu Ng & Gregory Levitin, 2012. "Element maintenance and allocation for linear consecutively connected systems," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 964-973.
    28. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    29. Hausken, Kjell, 2019. "The dynamics of terrorist organizations," Operations Research Perspectives, Elsevier, vol. 6(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wencheng & Li, Linqing & Liu, Hongyi & Zhang, Rui & Xu, Minhao, 2021. "Defense resource allocation in road dangerous goods transportation network: A Self-Contained Girvan-Newman Algorithm and Mean Variance Model combined approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Kaiye Gao & Hui Xiao & Li Qu & Shouyang Wang, 2022. "Optimal interception strategy of air defence missile system considering multiple targets and phases," Journal of Risk and Reliability, , vol. 236(1), pages 138-147, February.
    5. Najafi, Seyedvahid & Zheng, Rui & Lee, Chi-Guhn, 2021. "An optimal opportunistic maintenance policy for a two-unit series system with general repair using proportional hazards models," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Li, Xianxiong & Lan, Xinbo & Mirzaei, A & Aghdam Bonab, Mohammad Jalilvand, 2022. "Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    10. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    4. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    5. Di Wu & Xiangbin Yan & Rui Peng & Shaomin Wu, 2020. "Optimal defence-attack strategies between one defender and two attackers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1830-1846, November.
    6. Gao, Kaiye & Yan, Xiangbin & Liu, Xiang-dong & Peng, Rui, 2019. "Object defence of a single object with preventive strike of random effect," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 209-219.
    7. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    8. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    9. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    10. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    11. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    13. Konrad, Kai A., 2024. "The collective security dilemma of preemptive strikes," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1191-1199.
    14. Wu, Di & Xiao, Hui & Peng, Rui, 2018. "Object defense with preventive strike and false targets," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 76-80.
    15. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Comment," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 507-515, October.
    17. R Peng & G Levitin & M Xie & S H Ng, 2011. "Optimal defence of single object with imperfect false targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 134-141, January.
    18. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    19. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
    20. Ben Yaghlane, Asma & Azaiez, M. Naceur, 2017. "Systems under attack-survivability rather than reliability: Concept, results, and applications," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1156-1164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019312049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.