IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v198y2020ics0951832019307744.html
   My bibliography  Save this article

Reliability analysis of IoT systems with competitions from cascading probabilistic function dependence

Author

Listed:
  • Zhao, Guilin
  • Xing, Liudong

Abstract

This paper models an Internet of Things (IoT) system subject to probabilistic functional dependence (PFD), which takes place when the failure of one component (trigger) causes other system components (dependent components) to become isolated or inaccessible with certain probabilities. Competitions in the time domain between the trigger failure and dependent components’ propagated failures may lead to dramatically different system statuses. The PFD behavior abounds in IoT systems involving relayed wireless communications (e.g., body sensor systems, smart homes). The existing works assume single-level PFD and zero failure propagation time. In practice, however cascading PFD may take place in IoT systems with multi-level configurations. Due to the cascading effect, a component may play a dual role as both a trigger and a dependent component simultaneously, creating correlations among different PFD groups. In addition, the failure originating from a component may take some random time to become effective. In this work, we make contributions by proposing a combinatorial hierarchical methodology for reliability analysis of IoT systems subject to cascading PFD and random failure propagation time. The suggested methodology is applicable to arbitrary types of failure time and propagation time distributions. An example smart home sensor system is analyzed to demonstrate the proposed methodology.

Suggested Citation

  • Zhao, Guilin & Xing, Liudong, 2020. "Reliability analysis of IoT systems with competitions from cascading probabilistic function dependence," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019307744
    DOI: 10.1016/j.ress.2020.106812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019307744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    2. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    3. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    5. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Competing failure analysis in phased-mission systems with functional dependence in one of phases," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 90-99.
    6. Xing, Liudong & Levitin, Gregory, 2010. "Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1210-1215.
    7. Maaroufi, Ghofrane & Chelbi, Anis & Rezg, Nidhal, 2013. "Optimal selective renewal policy for systems subject to propagated failures with global effect and failure isolation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Gong, Huadong & Su, Xiaochao & Chen, Yicun, 2021. "Propagation model of cascading failure based on discrete dynamical system," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Zhang, Xiaoyu & Xu, Maochao & Da, Gaofeng & Zhao, Peng, 2021. "Ensuring confidentiality and availability of sensitive data over a network system under cyber threats," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    4. Fu, Xiuwen & Yang, Yongsheng, 2021. "Analysis on invulnerability of wireless sensor networks based on cellular automata," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Zhao, Guilin & Xing, Liudong, 2023. "Reliability analysis of body sensor networks with correlated isolation groups," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Fu, Xiuwen & Li, Qing & Li, Wenfeng, 2023. "Modeling and analysis of industrial IoT reliability to cascade failures: An information-service coupling perspective," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Fu, Xiuwen & Wang, Ye & Yang, Yongsheng & Postolache, Octavian, 2022. "Analysis on cascading reliability of edge-assisted Internet of Things," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Jafary, Bentolhoda & Mele, Andrew & Fiondella, Lance, 2020. "Component-based system reliability subject to positive and negative correlation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Yu Zang & Jiaxiang E & Lance Fiondella, 2024. "A Network Reliability Analysis Method for Complex Real-Time Systems: Case Studies in Railway and Maritime Systems," Mathematics, MDPI, vol. 12(19), pages 1-30, September.
    14. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Wang, Ning & Xiao, Yiyong & Tian, Tianzi & Yang, Jun, 2023. "The optimal 5G base station location of the wireless sensor network considering timely reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    3. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    5. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Zhao, Guilin & Xing, Liudong, 2023. "Reliability analysis of body sensor networks with correlated isolation groups," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    8. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    9. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    10. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    11. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Maaroufi, Ghofrane & Chelbi, Anis & Rezg, Nidhal, 2013. "Optimal selective renewal policy for systems subject to propagated failures with global effect and failure isolation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 61-70.
    13. Ahmed Ragab & Soumaya Yacout & Mohamed-Salah Ouali & Hany Osman, 2019. "Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 255-274, January.
    14. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Cui, Yiqian & Shi, Junyou & Wang, Zili, 2015. "An analytical model of electronic fault diagnosis on extension of the dependency theory," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 192-202.
    16. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
    18. Peng Su & Guanjun Wang, 2022. "Reliability analysis of network systems subject to probabilistic propagation failures and failure isolation effects," Journal of Risk and Reliability, , vol. 236(2), pages 290-306, April.
    19. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    20. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:198:y:2020:i:c:s0951832019307744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.