IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v196y2020ics0951832019309639.html
   My bibliography  Save this article

A scenario optimization approach to reliability-based design

Author

Listed:
  • Rocchetta, Roberto
  • Crespo, Luis G.
  • Kenny, Sean P.

Abstract

This article introduces a scenario optimization framework for reliability-based design given a set of observations of uncertain parameters. In contrast to traditional methods, scenario optimization makes direct use of the available data thereby eliminating the need for creating a probabilistic model of the uncertainty in the parameters. This feature makes the resulting design exempt from the subjectivity caused by prescribing an uncertainty model from insufficient data. Furthermore, scenario theory enables rigorously bounding the probability of the resulting design satisfying the reliability requirements imposed upon it with respect to additional, unseen observations drawn from the same data-generating-mechanism. This bound, which is non-asymptotic and distribution-free, requires calculating the set of support constraints corresponding to the optimal design. In this paper we propose a framework for seeking such a design and a computationally tractable algorithm for calculating such a set. This information allows determining the degree of stringency that each individual requirement imposes on the optimal design. Furthermore, we propose a chance-constrained optimization technique to eliminate the effect of outliers in the resulting optimal design. The ideas proposed are illustrated by a set of easily reproducible case studies having algebraic limit state functions.

Suggested Citation

  • Rocchetta, Roberto & Crespo, Luis G. & Kenny, Sean P., 2020. "A scenario optimization approach to reliability-based design," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:reensy:v:196:y:2020:i:c:s0951832019309639
    DOI: 10.1016/j.ress.2019.106755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019309639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norbert Kuschel & Rüdiger Rackwitz, 1997. "Two basic problems in reliability-based structural optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 309-333, October.
    2. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    3. Jianyu Xu & Min Xie & Qingpei Hu, 2019. "Reliability assessment for load‐sharing systems with exponential components using statistical expansion as a correction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(4), pages 998-1010, July.
    4. Clark, Caitlyn E. & DuPont, Bryony, 2018. "Reliability-based design optimization in offshore renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 390-400.
    5. M. C. Campi & S. Garatti, 2011. "A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 257-280, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    4. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    5. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    7. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    8. Yuan, Xiukai & Lu, Zhenzhou, 2014. "Efficient approach for reliability-based optimization based on weighted importance sampling approach," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 107-114.
    9. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    10. Cristina Johansson & Johan Ölvander & Micael Derelöv, 2018. "Multi-objective optimization for safety and reliability trade-off: Optimization and results processing," Journal of Risk and Reliability, , vol. 232(6), pages 661-676, December.
    11. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    12. Arash Gourtani & Tri-Dung Nguyen & Huifu Xu, 2020. "A distributionally robust optimization approach for two-stage facility location problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 141-172, June.
    13. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Jensen, H.A. & Muñoz, A. & Papadimitriou, C. & Millas, E., 2016. "Model-reduction techniques for reliability-based design problems of complex structural systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 204-217.
    16. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    17. Wei, Shaoyuan & Murgovski, Nikolce & Jiang, Jiuchun & Hu, Xiaosong & Zhang, Weige & Zhang, Caiping, 2020. "Stochastic optimization of a stationary energy storage system for a catenary-free tramline," Applied Energy, Elsevier, vol. 280(C).
    18. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2021. "Reliability index function approximation based on adaptive double-loop Kriging for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    20. Abdin, Islam & Li, Yan-Fu & Zio, Enrico, 2017. "Risk assessment of power transmission network failures in a uniform pricing electricity market environment," Energy, Elsevier, vol. 138(C), pages 1042-1055.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:196:y:2020:i:c:s0951832019309639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.