IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832019302455.html
   My bibliography  Save this article

Optimizing inspection routes in pipeline networks

Author

Listed:
  • Chen, Thomas Ying-Jeh
  • Riley, Connor Thomas
  • Van Hentenryck, Pascal
  • Guikema, Seth David

Abstract

Maintaining an aging network is a challenge for many water utilities due to limited budgets and uncertainty surrounding the physical condition of buried pipeline assets. The deployment of robotic inspections provides high quality data, but these platforms have limited use due to cost and operational constraints. To facilitate cost-efficient inspections, operators need to identify high-risk assets while accounting for the effectiveness of the tools at hand. This paper addresses inspection planning with the goal of finding an optimal route while considering tool limitations. An exact integer programming formulation is presented where only three factors are used to characterize tool constraints. Two classes of solution methods are explored: 1) tree based searches, and 2) integer programming. This paper demonstrates how each method can be used to identify optimal paths within a real water distribution system. Empirical trials suggest that tree-based search methods are the most efficient when the path limit is short, but do not scale well when the path length increases. In contrast, integer-programming methods are more effective for longer path lengths but have scalability issues for large network sizes. Data preprocessing, where the input network size is reduced, can provide large computation time reductions while returning near-optimal solutions.

Suggested Citation

  • Chen, Thomas Ying-Jeh & Riley, Connor Thomas & Van Hentenryck, Pascal & Guikema, Seth David, 2020. "Optimizing inspection routes in pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019302455
    DOI: 10.1016/j.ress.2019.106700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019302455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kallen, M.J. & van Noortwijk, J.M., 2005. "Optimal maintenance decisions under imperfect inspection," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 177-185.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    3. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    4. Chen, Thomas Ying-Jeh & Guikema, Seth David & Daly, Craig Michael, 2019. "Optimal pipe inspection paths considering inspection tool limitations," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 156-166.
    5. Mancuso, A. & Compare, M. & Salo, A. & Zio, E. & Laakso, T., 2016. "Risk-based optimization of pipe inspections in large underground networks with imprecise information," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 228-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Thomas Ying-Jeh & Guikema, Seth David & Daly, Craig Michael, 2019. "Optimal pipe inspection paths considering inspection tool limitations," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 156-166.
    2. Ruiz Muñoz, G.A. & Sørensen, J.D., 2020. "Probabilistic inspection planning of offshore welds subject to the transition from protected to corrosive environment," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    4. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    5. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    6. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    7. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    9. Bektaş, Tolga, 2012. "Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancing," European Journal of Operational Research, Elsevier, vol. 216(1), pages 83-93.
    10. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    11. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    12. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    13. Chen, Xi, 2018. "When does store consolidation lead to higher emissions?," International Journal of Production Economics, Elsevier, vol. 202(C), pages 109-122.
    14. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    15. Faisal I. Khan & Mahmoud M. Haddara & Subrata K. Bhattacharya, 2006. "Risk‐Based Integrity and Inspection Modeling (RBIIM) of Process Components/System," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 203-221, February.
    16. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    17. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    18. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    19. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    20. Dongliang Lu & Mahesh D Pandey & Wei-Chau Xie, 2013. "An efficient method for the estimation of parameters of stochastic gamma process from noisy degradation measurements," Journal of Risk and Reliability, , vol. 227(4), pages 425-433, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019302455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.