IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp318-328.html
   My bibliography  Save this article

Equilibrium analysis of bitcoin block withholding attack: A generalized model

Author

Listed:
  • Wu, Di
  • Liu, Xiang-dong
  • Yan, Xiang-bin
  • Peng, Rui
  • Li, Gang

Abstract

Block withholding attack is an action where a miner who has found a legal block chooses not to submit it but rather directly abandons it. This attack makes the mining pool lose all bitcoin rewards contained within the block. In this paper, we construct a generalized model where two participants can choose to either cooperate with each other or employ a block withholding attack in the mining pool. To make the model more realistic, we consider both the cost of partial proof of work and the cost of cooperation. We also calculate the reward-per-time instead of profit-per-time to better measure the payoffs of each party. Further, we discuss the case where the payoff function and cost function are directly related to the computational power. The pure strategy and mixed strategy are analyzed respectively and the segmentations of the equilibrium are shown. We demonstrate that increasing the information asymmetry by utilizing information conceal mechanisms could lower the occurrence of the BWH attack.

Suggested Citation

  • Wu, Di & Liu, Xiang-dong & Yan, Xiang-bin & Peng, Rui & Li, Gang, 2019. "Equilibrium analysis of bitcoin block withholding attack: A generalized model," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 318-328.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:318-328
    DOI: 10.1016/j.ress.2018.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018310494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell & Ben Haim, Hanoch, 2013. "Defending majority voting systems against a strategic attacker," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 37-44.
    2. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    3. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    4. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    5. Dag Haugland & Eligius M. T. Hendrix, 2016. "Pooling Problems with Polynomial-Time Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 591-615, August.
    6. Hugh R. Medal & Edward A. Pohl & Manuel D. Rossetti, 2016. "Allocating Protection Resources to Facilities When the Effect of Protection is Uncertain," IISE Transactions, Taylor & Francis Journals, vol. 48(3), pages 220-234, March.
    7. Wu, Di & Xiao, Hui & Peng, Rui, 2018. "Object defense with preventive strike and false targets," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 76-80.
    8. Levitin, Gregory & Hausken, Kjell & Dai, Yuanshun, 2014. "Optimal defense with variable number of overarching and individual protections," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 81-90.
    9. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihuai Chen & Bo Li & Xiaohan Shan & Xiaoming Sun & Jialin Zhang, 2022. "Discouraging pool block withholding attacks in Bitcoin," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 444-459, March.
    2. Gao, Kaiye & Yan, Xiangbin & Liu, Xiang-dong & Peng, Rui, 2019. "Object defence of a single object with preventive strike of random effect," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 209-219.
    3. Di Wu & Xiangbin Yan & Rui Peng & Shaomin Wu, 2020. "Optimal defence-attack strategies between one defender and two attackers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1830-1846, November.
    4. Cheng Yukun & Xu Zhiqi & Yao Shuangliang, 2021. "The Evolutionary Equilibrium of Block Withholding Attack," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 266-279, June.
    5. Ahmad Firdaus & Mohd Faizal Ab Razak & Ali Feizollah & Ibrahim Abaker Targio Hashem & Mohamad Hazim & Nor Badrul Anuar, 2019. "The rise of “blockchain”: bibliometric analysis of blockchain study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1289-1331, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    4. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    5. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    6. Ramirez-Marquez, José Emmanuel & Li, Qing, 2018. "Locating and protecting facilities from intentional attacks using secrecyAuthor-Name: Zhang, Chi," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 51-62.
    7. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    8. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    10. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    11. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    12. Konrad, Kai A., 2024. "The collective security dilemma of preemptive strikes," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1191-1199.
    13. Wu, Di & Yan, Xiangbin & Peng, Rui & Wu, Shaomin, 2020. "Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    15. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    16. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Di Wu & Xiangbin Yan & Rui Peng & Shaomin Wu, 2020. "Optimal defence-attack strategies between one defender and two attackers," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1830-1846, November.
    19. González-Ortega, Jorge & Ríos Insua, David & Cano, Javier, 2019. "Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1085-1096.
    20. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:318-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.