IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v184y2019icp258-265.html
   My bibliography  Save this article

Verification of safety integrity level of high demand system based on Stochastic Petri Nets and Monte Carlo Simulation

Author

Listed:
  • Zhao, Xianqiong
  • Malasse, Olaf
  • Buchheit, Grégory

Abstract

The paper proposed an approach of verifying the Safety Integrity Level (SIL) for the high demand safety system. This approach is based on the Stochastic Petri Nets models and Monte Carlo simulation (SPN-MC) and follows the requirements of IEC61508, which is a commonly accepted standard in the domain of functional safety of programmable electronic and control engineering systems. The paper provides a comparative analysis of the SIL with the application of SPN-MC and the Reliability Block Diagram (RBD) method given by EN61508 to prove the correctness and feasibility of the SPN-MC approach. Additionally, a typical large scaled complex system was adopted to apply the novel approach, which is hard for classical analytical methods.

Suggested Citation

  • Zhao, Xianqiong & Malasse, Olaf & Buchheit, Grégory, 2019. "Verification of safety integrity level of high demand system based on Stochastic Petri Nets and Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 258-265.
  • Handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:258-265
    DOI: 10.1016/j.ress.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016307785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beugin, J. & Renaux, D. & Cauffriez, L., 2007. "A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1686-1700.
    2. Guo, Haitao & Yang, Xianhui, 2007. "A simple reliability block diagram method for safety integrity verification," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1267-1273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Wanyi & Ma, Xiaoxue & Qiao, Weiliang, 2024. "A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Long & Wang, Hong & Kang, Kai & Wang, Kai, 2014. "A novel method for SIL verification based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 36-45.
    2. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    3. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    4. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    6. Kiswendsida Abel Ouedraogo & Julie Beugin & El‐Miloudi El‐Koursi & Joffrey Clarhaut & Dominique Renaux & Frederic Lisiecki, 2018. "Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1634-1655, August.
    7. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    8. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    9. Cui, Lin & Shu, Yidan & Wang, Zhaohui & Zhao, Jinsong & Qiu, Tong & Sun, Wenyong & Wei, Zhenqiang, 2012. "HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 56-64.
    10. Kumar, Manoj & Verma, A.K. & Srividya, A., 2008. "Modeling demand rate and imperfect proof-test and analysis of their effect on system safety," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1720-1729.
    11. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2013. "New PFH-formulas for k-out-of-n:F-systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 112-118.
    12. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    13. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    14. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    16. Baohua Wang & Danning Li & Shun Zhang, 2019. "The Performance Quantitative Model Based on the Specification and Relation of the Component," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    17. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Aleatory uncertainty quantification of project resources and its application to project scheduling," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    18. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    19. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    20. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:258-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.