IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v172y2018icp84-93.html
   My bibliography  Save this article

A methodology to evaluate risk for supporting decisions involving alignment with organizational values

Author

Listed:
  • Thekdi, Shital A.
  • Aven, Terje

Abstract

There is an increasing need for organizations to evaluate aspects that are not easily quantified, such as alignment with organizational values, within their strategic planning decisions. These aspects are often insufficiently understood and are rapidly changing, with potential to cause severe negative consequences. Because there is no accepted methodology for characterizing these aspects, this type of risk is often neglected or given inadequate attention. This paper develops a methodology to evaluate risk and uncertainty related to alignment with organizational values. The methodology builds on risk perspectives involving uncertainties and knowledge rather than probability estimates. We illustrate the methodology on an application within the energy sector. This paper is relevant for both public and private sector organizations who face the dilemma of “what you cannot measure you cannot manage†, implying a struggle to include low-data and low-knowledge aspects into risk-based decisions.

Suggested Citation

  • Thekdi, Shital A. & Aven, Terje, 2018. "A methodology to evaluate risk for supporting decisions involving alignment with organizational values," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 84-93.
  • Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:84-93
    DOI: 10.1016/j.ress.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017309572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aven, Terje, 2017. "Improving risk characterisations in practical situations by highlighting knowledge aspects, with applications to risk matrices," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 42-48.
    2. Terje Aven, 2017. "The flaws of the ISO 31000 conceptualisation of risk," Journal of Risk and Reliability, , vol. 231(5), pages 467-468, October.
    3. Aven, Terje & Guikema, Seth, 2011. "Whose uncertainty assessments (probability distributions) does a risk assessment report: the analysts' or the experts'?," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1257-1262.
    4. Jason R. W. Merrick & John R. Harrald, 2007. "Making Decisions About Safety in US Ports and Waterways," Interfaces, INFORMS, vol. 37(3), pages 240-252, June.
    5. Thekdi, Shital A. & Lambert, James H., 2015. "Integrated risk management of safety and development on transportation corridors," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 1-12.
    6. Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
    7. Aven, Terje, 2015. "Implications of black swans to the foundations and practice of risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 83-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aven, Terje & Ylönen, Marja, 2019. "The strong power of standards in the safety and risk fields: A threat to proper developments of these fields?," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 279-286.
    2. Aven, Terje & Kristensen, Vidar, 2019. "How the distinction between general knowledge and specific knowledge can improve the foundation and practice of risk assessment and risk-informed decision-making," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    4. Ed Cook & Jason R. W. Merrick, 2023. "Technology Implementation at Capital One," Interfaces, INFORMS, vol. 53(3), pages 178-191, May.
    5. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    6. Carl Danner & Paul Schulman, 2019. "Rethinking Risk Assessment for Public Utility Safety Regulation," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1044-1059, May.
    7. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    8. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    9. Terje Aven & Ortwin Renn, 2015. "An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 701-712, April.
    10. Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    12. Mangirdas Morkunas & Gintaras Cernius & Gintare Giriuniene, 2019. "Assessing Business Risks of Natural Gas Trading Companies: Evidence from GET Baltic," Energies, MDPI, vol. 12(14), pages 1-14, July.
    13. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    14. Qiu, S. & Rachedi, N. & Sallak, M. & Vanderhaegen, F., 2017. "A quantitative model for the risk evaluation of driver-ADAS systems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 184-191.
    15. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    17. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    18. Marcin Nowak & Rafał Mierzwiak & Marcin Butlewski, 2020. "Occupational risk assessment with grey system theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 717-732, June.
    19. Xu, Wangtu (Ato) & Long, Ying & Zhang, Wei, 2019. "Prioritizing future funding and construction of the planned high-speed rail corridors of China – According to regional structure and urban land development potential indices," Transport Policy, Elsevier, vol. 81(C), pages 381-395.
    20. Abrahamsen, Eirik Bjorheim & Abrahamsen, Håkon Bjorheim & Milazzo, Maria Francesca & Selvik, Jon Tømmerås, 2018. "Using the ALARP principle for safety management in the energy production sector of chemical industry," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 160-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:84-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.